scispace - formally typeset
Search or ask a question
Author

Patrick G. J. Irwin

Bio: Patrick G. J. Irwin is an academic researcher from University of Oxford. The author has contributed to research in topics: Stratosphere & Jupiter. The author has an hindex of 56, co-authored 269 publications receiving 10193 citations. Previous affiliations of Patrick G. J. Irwin include Polish Academy of Sciences & Max Planck Society.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a nonlinear optimal estimator for multivariatE spectral analySIS (NEMESIS) was developed to interpret observations of Saturn and Titan from the composite infrared spectrometer on board the NASA Cassini spacecraft.
Abstract: With the exception of in situ atmospheric probes, the most useful way to study the atmospheres of other planets is to observe their electromagnetic spectra through remote observations, either from ground-based telescopes or from spacecraft. Atmospheric properties most consistent with these observed spectra are then derived with retrieval models. All retrieval models attempt to extract the maximum amount of atmospheric information from finite sets of data, but while the problem to be solved is fundamentally the same for any planetary atmosphere, until now all such models have been assembled ad hoc to address data from individual missions. In this paper, we describe a new general-purpose retrieval model, Non-linear Optimal Estimator for MultivariatE Spectral analySIS (NEMESIS), which was originally developed to interpret observations of Saturn and Titan from the composite infrared spectrometer on board the NASA Cassini spacecraft. NEMESIS has been constructed to be generally applicable to any planetary atmosphere and can be applied from the visible/near-infrared right out to microwave wavelengths, modelling both reflected sunlight and thermal emission in either scattering or non-scattering conditions. NEMESIS has now been successfully applied to the analysis of data from many planetary missions and also ground-based observations.

492 citations

Journal ArticleDOI
23 Jan 2015-Science
TL;DR: The VIRTIS instrument on board the Rosetta spacecraft has provided evidence of carbon-bearing compounds on the nucleus of the comet 67P/Churyumov-Gerasimenko, and no ice-rich patches are observed, indicating a generally dehydrated nature for the surface currently illuminated by the Sun.
Abstract: The VIRTIS (Visible, Infrared and Thermal Imaging Spectrometer) instrument on board the Rosetta spacecraft has provided evidence of carbon-bearing compounds on the nucleus of the comet 67P/Churyumov-Gerasimenko The very low reflectance of the nucleus (normal albedo of 0060 ± 0003 at 055 micrometers), the spectral slopes in visible and infrared ranges (5 to 25 and 15 to 5% kA−1), and the broad absorption feature in the 29-to-36–micrometer range present across the entire illuminated surface are compatible with opaque minerals associated with nonvolatile organic macromolecular materials: a complex mixture of various types of carbon-hydrogen and/or oxygen-hydrogen chemical groups, with little contribution of nitrogen-hydrogen groups In active areas, the changes in spectral slope and absorption feature width may suggest small amounts of water-ice However, no ice-rich patches are observed, indicating a generally dehydrated nature for the surface currently illuminated by the Sun

350 citations

Book ChapterDOI
TL;DR: The Composite Infrared Spectrometer (CIRS) is a remote-sensing Fourier transform spectrometer on the Cassini orbiter that measures thermal radiation over two decades in wavenumber, with a spectral resolution that can be set from 0.5 to 15.5 cm− 1.
Abstract: The Composite Infrared Spectrometer (CIRS) is a remote-sensing Fourier Transform Spectrometer (FTS) on the Cassini orbiter that measures thermal radiation over two decades in wavenumber, from 10 to 1400 cm− 1 (1 mm to 7μ m), with a spectral resolution that can be set from 0.5 to 15.5 cm− 1. The far infrared portion of the spectrum (10–600 cm− 1) is measured with a polarizing interferometer having thermopile detectors with a common 4-mrad field of view (FOV). The middle infrared portion is measured with a traditional Michelson interferometer having two focal planes (600–1100 cm− 1, 1100–1400 cm− 1). Each focal plane is composed of a 1× 10 array of HgCdTe detectors, each detector having a 0.3-mrad FOV. CIRS observations will provide three-dimensional maps of temperature, gas composition, and aerosols/condensates of the atmospheres of Titan and Saturn with good vertical and horizontal resolution, from deep in their tropospheres to high in their mesospheres. CIRS’s ability to observe atmospheres in the limb-viewing mode (in addition to nadir) offers the opportunity to provide accurate and highly resolved vertical profiles of these atmospheric variables. The ability to observe with high-spectral resolution should facilitate the identification of new constituents. CIRS will also map the thermal and compositional properties of the surfaces of Saturn’s icy satellites. It will similarly map Saturn’s rings, characterizing their dynamical and spatial structure and constraining theories of their formation and evolution. The combination of broad spectral range, programmable spectral resolution, the small detector fields of view, and an orbiting spacecraft platform will allow CIRS to observe the Saturnian system in the thermal infrared at a level of detail not previously achieved.

326 citations

Journal ArticleDOI
Giovanna Tinetti1, Pierre Drossart, Paul Eccleston2, Paul Hartogh3  +240 moreInstitutions (45)
TL;DR: The ARIEL mission as mentioned in this paper was designed to observe a large number of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25-7.8 μm spectral range and multiple narrow-band photometry in the optical.
Abstract: Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.

298 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The new HITRAN is greatly extended in terms of accuracy, spectral coverage, additional absorption phenomena, added line-shape formalisms, and validity, and molecules, isotopologues, and perturbing gases have been added that address the issues of atmospheres beyond the Earth.
Abstract: This paper describes the contents of the 2016 edition of the HITRAN molecular spectroscopic compilation. The new edition replaces the previous HITRAN edition of 2012 and its updates during the intervening years. The HITRAN molecular absorption compilation is composed of five major components: the traditional line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, infrared absorption cross-sections for molecules not yet amenable to representation in a line-by-line form, collision-induced absorption data, aerosol indices of refraction, and general tables such as partition sums that apply globally to the data. The new HITRAN is greatly extended in terms of accuracy, spectral coverage, additional absorption phenomena, added line-shape formalisms, and validity. Moreover, molecules, isotopologues, and perturbing gases have been added that address the issues of atmospheres beyond the Earth. Of considerable note, experimental IR cross-sections for almost 300 additional molecules important in different areas of atmospheric science have been added to the database. The compilation can be accessed through www.hitran.org. Most of the HITRAN data have now been cast into an underlying relational database structure that offers many advantages over the long-standing sequential text-based structure. The new structure empowers the user in many ways. It enables the incorporation of an extended set of fundamental parameters per transition, sophisticated line-shape formalisms, easy user-defined output formats, and very convenient searching, filtering, and plotting of data. A powerful application programming interface making use of structured query language (SQL) features for higher-level applications of HITRAN is also provided.

7,638 citations

Journal Article
TL;DR: 1. Place animal in induction chamber and anesthetize the mouse and ensure sedation, move it to a nose cone for hair removal using cream and reduce anesthesia to maintain proper heart rate.
Abstract: 1. Place animal in induction chamber and anesthetize the mouse and ensure sedation. 2. Once the animal is sedated, move it to a nose cone for hair removal using cream. Only apply cream to the area of the chest that will be utilized for imaging. Once the hair is removed, wipe area with wet gauze to ensure all hair is removed. 3. Move the animal to the imaging platform and tape its paws to the ECG lead plates and insert rectal probe. Body temperature should be maintained at 36-37°C. During imaging, reduce anesthesia to maintain proper heart rate. If the animal shows signs of being awake, use a higher concentration of anesthetic.

1,557 citations

Journal ArticleDOI
23 Feb 2017-Nature
TL;DR: The observations reveal that at least seven planets with sizes and masses similar to those of Earth revolve around TRAPPIST-1, and the six inner planets form a near-resonant chain, such that their orbital periods are near-ratios of small integers.
Abstract: One aim of modern astronomy is to detect temperate, Earth-like exoplanets that are well suited for atmospheric characterization. Recently, three Earth-sized planets were detected that transit (that is, pass in front of) a star with a mass just eight per cent that of the Sun, located 12 parsecs away. The transiting configuration of these planets, combined with the Jupiter-like size of their host star—named TRAPPIST-1—makes possible in-depth studies of their atmospheric properties with present-day and future astronomical facilities. Here we report the results of a photometric monitoring campaign of that star from the ground and space. Our observations reveal that at least seven planets with sizes and masses similar to those of Earth revolve around TRAPPIST-1. The six inner planets form a near-resonant chain, such that their orbital periods (1.51, 2.42, 4.04, 6.06, 9.1 and 12.35 days) are near-ratios of small integers. This architecture suggests that the planets formed farther from the star and migrated inwards. Moreover, the seven planets have equilibrium temperatures low enough to make possible the presence of liquid water on their surfaces.

1,476 citations

01 Sep 1998
TL;DR: A stellar spectral flux library of wide spectral coverage and an example of its application are presented in this paper, which consists of 131 flux-calibrated spectra, encompassing all normal spectral types and luminosity classes at solar abundance, and metal-weak and metalrich F-K dwarf and G-K giant components.
Abstract: A stellar spectral flux library of wide spectral coverage and an example of its application are presented. The new library consists of 131 flux-calibrated spectra, encompassing all normal spectral types and luminosity classes at solar abundance, and metal-weak and metal-rich F-K dwarf and G-K giant components. Each library spectrum was formed by combining data from several sources overlapping in wavelength coverage. The SIMBAD database, measured colors, and line strengths were used to check that each input component has closely similar stellar type. The library has complete spectral coverage from 1150 to 10620 Afor all components and to 25000 Afor about half of them, mainly later types of solar abundance. Missing spectral coverage in the infrared currently consists of a smooth energy distribution formed from standard colors for the relevant types. The library is designed to permit inclusion of additional digital spectra, particularly of non-solar abundance stars in the infrared, as they become available. The library spectra are each given as Fl versus l, from 1150 to 25000 Ain steps of 5 A ˚. A program to combine the library spectra in the ratios appropriate to a selected isochrone is described and an example of a spectral component signature of a composite population of solar age and metallicity is illustrated. The library spectra and associated tables are available as text files by remote electronic access.

999 citations

01 Jan 1996
TL;DR: In this paper, the amount of water outgassed from Mars by impact erosion and hydrodynamic escape is estimated to be between 6 to 160 m. The two sets of estimates may be reconciled if early in its history, Mars lost part of its atmosphere.
Abstract: Estimates of the amount of water outgassed from Mars, based on the composition of the atmosphere, range from 6 to 160 m, as compared with 3 km for the Earth. In contrast, large flood features, valley networks, and several indicators of ground ice suggest that at least 500 m of water have outgassed. The two sets of estimates may be reconciled if early in its history, Mars lost part of its atmosphere by impact erosion and hydrodynamic escape.

910 citations