scispace - formally typeset
Search or ask a question
Author

Patrick Haffner

Other affiliations: Nuance Communications, Carnegie Mellon University, Orange S.A.  ...read more
Bio: Patrick Haffner is an academic researcher from AT&T Labs. The author has contributed to research in topics: Support vector machine & Speaker recognition. The author has an hindex of 32, co-authored 97 publications receiving 42604 citations. Previous affiliations of Patrick Haffner include Nuance Communications & Carnegie Mellon University.


Papers
More filters
Patent
14 Aug 2014
TL;DR: In this article, the authors present systems, methods and non-transitory computer-readable media for performing speech recognition across different applications or environments without model customization or prior knowledge of the received speech.
Abstract: Disclosed herein are systems, methods and non-transitory computer-readable media for performing speech recognition across different applications or environments without model customization or prior knowledge of the domain of the received speech. The disclosure includes recognizing received speech with a collection of domain-specific speech recognizers, determining a speech recognition confidence for each of the speech recognition outputs, selecting speech recognition candidates based on a respective speech recognition confidence for each speech recognition output, and combining selected speech recognition candidates to generate text based on the combination.

25 citations

Patent
Léon Bottou1, Patrick Haffner1
31 Jan 2002
TL;DR: In this paper, a method, system, and machine-readable medium for classifying an image element as one of a plurality of categories, including assigning image element based on a ratio between an unoccluded perimeter of the image element and an occluded perimeter of image element, was proposed.
Abstract: A method, system, and machine-readable medium for classifying an image element as one of a plurality of categories, including assigning the image element based on a ratio between an unoccluded perimeter of the image element and an occluded perimeter of the image element and coding the image element according to a coding scheme associated with the category to which the image element is classified. Exemplary applications include image compression, where categories include image foreground and background layers.

25 citations

Posted Content
TL;DR: This work builds on the concept of predictive coding, which has gained influence in cognitive science, in a neural framework, and develops a novel architecture, the Temporal Neural Coding Network, and its learning algorithm, Discrepancy Reduction.
Abstract: We explore whether useful temporal neural generative models can be learned from sequential data without back-propagation through time. We investigate the viability of a more neurocognitively-grounded approach in the context of unsupervised generative modeling of sequences. Specifically, we build on the concept of predictive coding, which has gained influence in cognitive science, in a neural framework. To do so we develop a novel architecture, the Temporal Neural Coding Network, and its learning algorithm, Discrepancy Reduction. The underlying directed generative model is fully recurrent, meaning that it employs structural feedback connections and temporal feedback connections, yielding information propagation cycles that create local learning signals. This facilitates a unified bottom-up and top-down approach for information transfer inside the architecture. Our proposed algorithm shows promise on the bouncing balls generative modeling problem. Further experiments could be conducted to explore the strengths and weaknesses of our approach.

24 citations

Patent
03 May 2010
TL;DR: In this paper, a labeler is presented with utterances that have already been identified as belonging to a particular class or call type, and is asked to assign a call type to the utterances.
Abstract: Systems and methods for monitoring labelers of speech data. To test or train labelers, a labeler is presented with utterances that have already been identified as belonging to a particular class or call type. The labeler is asked to assign a call type to the utterances. The performance of the labeler is measured by comparing the call types assigned by the labeler with the existing call types of the utterances. The performance of a labeler can also be monitored as the labeler labels speech data by occasionally having the labeler label an utterance that is already labeled and by storing the results.

24 citations


Cited by
More filters
Journal ArticleDOI
28 May 2015-Nature
TL;DR: Deep learning is making major advances in solving problems that have resisted the best attempts of the artificial intelligence community for many years, and will have many more successes in the near future because it requires very little engineering by hand and can easily take advantage of increases in the amount of available computation and data.
Abstract: Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.

46,982 citations

Journal ArticleDOI
01 Jan 1998
TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Abstract: Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradient based learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional neural networks, which are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques. Real-life document recognition systems are composed of multiple modules including field extraction, segmentation recognition, and language modeling. A new learning paradigm, called graph transformer networks (GTN), allows such multimodule systems to be trained globally using gradient-based methods so as to minimize an overall performance measure. Two systems for online handwriting recognition are described. Experiments demonstrate the advantage of global training, and the flexibility of graph transformer networks. A graph transformer network for reading a bank cheque is also described. It uses convolutional neural network character recognizers combined with global training techniques to provide record accuracy on business and personal cheques. It is deployed commercially and reads several million cheques per day.

42,067 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations

Book
Vladimir Vapnik1
01 Jan 1995
TL;DR: Setting of the learning problem consistency of learning processes bounds on the rate of convergence ofLearning processes controlling the generalization ability of learning process constructing learning algorithms what is important in learning theory?
Abstract: Setting of the learning problem consistency of learning processes bounds on the rate of convergence of learning processes controlling the generalization ability of learning processes constructing learning algorithms what is important in learning theory?.

40,147 citations

Journal ArticleDOI
08 Dec 2014
TL;DR: A new framework for estimating generative models via an adversarial process, in which two models are simultaneously train: a generative model G that captures the data distribution and a discriminative model D that estimates the probability that a sample came from the training data rather than G.
Abstract: We propose a new framework for estimating generative models via an adversarial process, in which we simultaneously train two models: a generative model G that captures the data distribution, and a discriminative model D that estimates the probability that a sample came from the training data rather than G. The training procedure for G is to maximize the probability of D making a mistake. This framework corresponds to a minimax two-player game. In the space of arbitrary functions G and D, a unique solution exists, with G recovering the training data distribution and D equal to ½ everywhere. In the case where G and D are defined by multilayer perceptrons, the entire system can be trained with backpropagation. There is no need for any Markov chains or unrolled approximate inference networks during either training or generation of samples. Experiments demonstrate the potential of the framework through qualitative and quantitative evaluation of the generated samples.

38,211 citations