scispace - formally typeset
Search or ask a question
Author

Patrick Merken

Other affiliations: Katholieke Universiteit Leuven, IMEC, École Normale Supérieure  ...read more
Bio: Patrick Merken is an academic researcher from Royal Military Academy. The author has contributed to research in topics: CMOS & Detector. The author has an hindex of 26, co-authored 109 publications receiving 5251 citations. Previous affiliations of Patrick Merken include Katholieke Universiteit Leuven & IMEC.


Papers
More filters
Journal ArticleDOI
TL;DR: The Photodetector Array Camera and Spectrometer (PACS) as discussed by the authors is one of the three science instruments on ESA's far infrared and sub-mil- limetre observatory.
Abstract: The Photodetector Array Camera and Spectrometer (PACS) is one of the three science instruments on ESA's far infrared and submil- limetre observatory. It employs two Ge:Ga photoconductor arrays (stressed and unstressed) with 16 × 25 pixels, each, and two filled silicon bolometer arrays with 16 × 32 and 32 × 64 pixels, respectively, to perform integral-field spectroscopy and imaging photom- etry in the 60−210 μm wavelength regime. In photometry mode, it simultaneously images two bands, 60−85 μ mo r 85−125 μ ma nd 125−210 μm, over a field of view of ∼1.75 � × 3.5 � , with close to Nyquist beam sampling in each band. In spectroscopy mode, it images afi eld of 47 �� × 47 �� , resolved into 5 × 5 pixels, with an instantaneous spectral coverage of ∼ 1500 km s −1 and a spectral resolution of ∼175 km s −1 . We summarise the design of the instrument, describe observing modes, calibration, and data analysis methods, and present our current assessment of the in-orbit performance of the instrument based on the performance verification tests. PACS is fully operational, and the achieved performance is close to or better than the pre-launch predictions.

2,645 citations

Journal ArticleDOI
TL;DR: A low-power and low-noise readout front-end with configurable characteristics for Electroencephalogram (EEG), Electrocardiogram (ECG), and Electromyogram (EMG) signals is implemented with key to its performance is the new AC-coupled chopped instrumentation amplifier.
Abstract: There is a growing demand for low-power, small-size and ambulatory biopotential acquisition systems. A crucial and important block of this acquisition system is the analog readout front-end. We have implemented a low-power and low-noise readout front-end with configurable characteristics for Electroencephalogram (EEG), Electrocardiogram (ECG), and Electromyogram (EMG) signals. Key to its performance is the new AC-coupled chopped instrumentation amplifier (ACCIA), which uses a low power current feedback instrumentation amplifier (IA). Thus, while chopping filters the 1/f noise of CMOS transistors and increases the CMRR, AC coupling is capable of rejecting differential electrode offset (DEO) up to plusmn50 mV from conventional Ag/AgCl electrodes. The ACCIA achieves 120 dB CMRR and 57 nV/radicHz input-referred voltage noise density, while consuming 11.1 muA from a 3 V supply. The chopping spike filter (CSF) stage filters the chopping spikes generated by the input chopper of ACCIA and the digitally controllable variable gain stage is used to set the gain and the bandwidth of the front-end. The front-end is implemented in a 0.5 mum CMOS process. Total current consumption is 20 muA from 3V

377 citations

Journal ArticleDOI
TL;DR: The presented ASIC includes eight readout front-end channels and an 11-bit analog-to-digital converter (ADC) and the key to its high performance and low-power dissipation is the new AC coupled chopper stabilized instrumentation amplifier implementation.
Abstract: The growing interest toward the improvement of patients' quality of life and the use of medical signals in nonmedical applications such as entertainment, sports, and brain-computerinterfaces, requires the implementation of miniaturized and wireless biopotential acquisition systems with ultralow power dissipation. Therefore, this paper presents the implementation of a complete EEG acquisition ASIC tailored towards the needs of such applications, i.e., high-signal quality, low-power dissipation and ease of use. The presented ASIC includes eight readout front-end channels and an 11-bit analog-to-digital converter (ADC). The key to its high performance and low-power dissipation is the new AC coupled chopper stabilized instrumentation amplifier (ACCIA) implementation that uses a coarse-fine servoloop and reaches more than 120 dB CMRR, consumes only 2.3 muA , and achieves a noise-efficiency factor (NEF) of 4.3. Furthermore, the ease of use of the ASIC is realized by incorporating Calibration and Electrode Impedance Measurement Modes to the ASIC. Therefore, the former can be used to check the functionality of the ASIC, as well as, to calibrate the gain matching of the channels, where as the latter can be used to track the quality of the biopotential electrode. The ASIC is implemented in 0.5 mum CMOS process and the total current consumption is 66 muA from 3 V.

263 citations

Journal ArticleDOI
01 Jan 2010
TL;DR: An ECG signal processing method with quad level vector (QLV) is proposed for the ECG holter system to achieve better performance with low-computation complexity.
Abstract: An ECG signal processing method with quad level vector (QLV) is proposed for the ECG holter system. The ECG processing consists of the compression flow and the classification flow, and the QLV is proposed for both flows to achieve better performance with low-computation complexity. The compression algorithm is performed by using ECG skeleton and the Huffman coding. Unit block size optimization, adaptive threshold adjustment, and 4-bit-wise Huffman coding methods are applied to reduce the processing cost while maintaining the signal quality. The heartbeat segmentation and the R-peak detection methods are employed for the classification algorithm. The performance is evaluated by using the Massachusetts Institute of Technology-Boston's Beth Israel Hospital Arrhythmia Database, and the noise robust test is also performed for the reliability of the algorithm. Its average compression ratio is 16.9:1 with 0.641% percentage root mean square difference value and the encoding rate is 6.4 kbps. The accuracy performance of the R-peak detection is 100% without noise and 95.63% at the worst case with -10-dB SNR noise. The overall processing cost is reduced by 45.3% with the proposed compression techniques.

160 citations

Journal ArticleDOI
TL;DR: Palladium nanowires were fabricated on silicon substrates using conventional microfabrication techniques as mentioned in this paper, and the response times can be reduced by increasing the applied bias due to resistive heating.
Abstract: Palladium nanowires were fabricated on silicon substrates using conventional microfabrication techniques. Sensors based on such nanowires show a reversible response to hydrogen concentrations as low as 27 ppm with response times varying from 5 s (H2 concentrations >20%) to 30 s (H2 concentrations <100 ppm) at room temperature. The response times can be reduced by increasing the applied bias due to resistive heating. The noise spectrum of the nanowires shows a 1/f behavior, sufficiently low to enables the detection of hydrogen with an ultralow-power consumption. The influence of oxygen on the nanowire response was also investigated. © 2009 American Institute of Physics.

158 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Herschel was launched on 14 May 2009, and is now an operational ESA space observatory o ering unprecedented observational capabilities in the far-infrared and sub-millimetre spectral range 55 671 m.
Abstract: Herschel was launched on 14 May 2009, and is now an operational ESA space observatory o ering unprecedented observational capabilities in the far-infrared and submillimetre spectral range 55 671 m. Herschel carries a 3.5 metre diameter passively cooled Cassegrain telescope, which is the largest of its kind and utilises a novel silicon carbide technology. The science payload comprises three instruments: two direct detection cameras/medium resolution spectrometers, PACS and SPIRE, and a very high-resolution heterodyne spectrometer, HIFI, whose focal plane units are housed inside a superfluid helium cryostat. Herschel is an observatory facility operated in partnership among ESA, the instrument consortia, and NASA. The mission lifetime is determined by the cryostat hold time. Nominally approximately 20,000 hours will be available for astronomy, 32% is guaranteed time and the remainder is open to the worldwide general astronomical community through a standard competitive proposal procedure.

3,359 citations

Journal ArticleDOI
TL;DR: The Photodetector Array Camera and Spectrometer (PACS) as discussed by the authors is one of the three science instruments on ESA's far infrared and sub-mil- limetre observatory.
Abstract: The Photodetector Array Camera and Spectrometer (PACS) is one of the three science instruments on ESA's far infrared and submil- limetre observatory. It employs two Ge:Ga photoconductor arrays (stressed and unstressed) with 16 × 25 pixels, each, and two filled silicon bolometer arrays with 16 × 32 and 32 × 64 pixels, respectively, to perform integral-field spectroscopy and imaging photom- etry in the 60−210 μm wavelength regime. In photometry mode, it simultaneously images two bands, 60−85 μ mo r 85−125 μ ma nd 125−210 μm, over a field of view of ∼1.75 � × 3.5 � , with close to Nyquist beam sampling in each band. In spectroscopy mode, it images afi eld of 47 �� × 47 �� , resolved into 5 × 5 pixels, with an instantaneous spectral coverage of ∼ 1500 km s −1 and a spectral resolution of ∼175 km s −1 . We summarise the design of the instrument, describe observing modes, calibration, and data analysis methods, and present our current assessment of the in-orbit performance of the instrument based on the performance verification tests. PACS is fully operational, and the achieved performance is close to or better than the pre-launch predictions.

2,645 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review progress over the past decade in observations of large-scale star formation, with a focus on the interface between extragalactic and Galactic studies.
Abstract: We review progress over the past decade in observations of large-scale star formation, with a focus on the interface between extragalactic and Galactic studies. Methods of measuring gas contents and star-formation rates are discussed, and updated prescriptions for calculating star-formation rates are provided. We review relations between star formation and gas on scales ranging from entire galaxies to individual molecular clouds.

2,525 citations

Journal ArticleDOI
Matthew Joseph Griffin, Alain Abergel1, A. Abreu, Peter A. R. Ade2  +186 moreInstitutions (27)
TL;DR: The Spectral and Photometric Imaging REceiver (SPIRE) is the Herschel Space Observatory's sub-millimetre camera and spectrometer as discussed by the authors, which is used for image and spectroscopic data acquisition.
Abstract: The Spectral and Photometric Imaging REceiver (SPIRE), is the Herschel Space Observatory`s submillimetre camera and spectrometer It contains a three-band imaging photometer operating at 250, 350 and 500 mu m, and an imaging Fourier-transform spectrometer (FTS) which covers simultaneously its whole operating range of 194-671 mu m (447-1550 GHz) The SPIRE detectors are arrays of feedhorn-coupled bolometers cooled to 03 K The photometer has a field of view of 4' x 8', observed simultaneously in the three spectral bands Its main operating mode is scan-mapping, whereby the field of view is scanned across the sky to achieve full spatial sampling and to cover large areas if desired The spectrometer has an approximately circular field of view with a diameter of 26' The spectral resolution can be adjusted between 12 and 25 GHz by changing the stroke length of the FTS scan mirror Its main operating mode involves a fixed telescope pointing with multiple scans of the FTS mirror to acquire spectral data For extended source measurements, multiple position offsets are implemented by means of an internal beam steering mirror to achieve the desired spatial sampling and by rastering of the telescope pointing to map areas larger than the field of view The SPIRE instrument consists of a cold focal plane unit located inside the Herschel cryostat and warm electronics units, located on the spacecraft Service Module, for instrument control and data handling Science data are transmitted to Earth with no on-board data compression, and processed by automatic pipelines to produce calibrated science products The in-flight performance of the instrument matches or exceeds predictions based on pre-launch testing and modelling: the photometer sensitivity is comparable to or slightly better than estimated pre-launch, and the spectrometer sensitivity is also better by a factor of 15-2

2,425 citations

Journal ArticleDOI
TL;DR: In this paper, the first results from the Gould Belt survey, obtained toward the Aquila Rift and Polaris Flare regions during the'science demonstration phase' of Herschel, were summarized.
Abstract: We summarize the first results from the Gould Belt survey, obtained toward the Aquila Rift and Polaris Flare regions during the 'science demonstration phase' of Herschel. Our 70-500 micron images taken in parallel mode with the SPIRE and PACS cameras reveal a wealth of filamentary structure, as well as numerous dense cores embedded in the filaments. Between ~ 350 and 500 prestellar cores and ~ 45-60 Class 0 protostars can be identified in the Aquila field, while ~ unbound starless cores and no protostars are observed in the Polaris field. The prestellar core mass function (CMF) derived for the Aquila region bears a strong resemblance to the stellar initial mass function (IMF), already confirming the close connection between the CMF and the IMF with much better statistics than earlier studies. Comparing and contrasting our Herschel results in Aquila and Polaris, we propose an observationally-driven scenario for core formation according to which complex networks of long, thin filaments form first within molecular clouds, and then the densest filaments fragment into a number of prestellar cores via gravitational instability.

1,542 citations