scispace - formally typeset
Search or ask a question
Author

Patrick S. Rollo

Other affiliations: University of Texas at Austin
Bio: Patrick S. Rollo is an academic researcher from University of Texas Health Science Center at Houston. The author has contributed to research in topics: Speech production & Speech perception. The author has an hindex of 7, co-authored 15 publications receiving 169 citations. Previous affiliations of Patrick S. Rollo include University of Texas at Austin.

Papers
More filters
Journal ArticleDOI
TL;DR: The relationships between ablation volumes and surgical or cognitive outcomes in 43 consecutive patients undergoing LITT for MTL epilepsy were evaluated.
Abstract: Objectives Laser interstitial thermal therapy (LITT) is a minimally invasive surgical technique for focal epilepsy. A major appeal of LITT is that it may result in fewer cognitive deficits, especially when targeting dominant hemisphere mesial temporal lobe (MTL) epilepsy. To evaluate this, as well as to determine seizure outcomes following LITT, we evaluated the relationships between ablation volumes and surgical or cognitive outcomes in 43 consecutive patients undergoing LITT for MTL epilepsy. Methods All patients underwent unilateral LITT targeting mesial temporal structures. FreeSurfer software was used to derive cortical and subcortical segmentation of the brain (especially subregions of the MTL) using preoperative magnetic resonance imaging (MRI). Ablation volumes were outlined using a postablation T1-contrasted MRI. The percentages of the amygdala, hippocampus, and entorhinal cortex ablated were quantified objectively. The volumetric measures were regressed against changes in neuropsychological performance before and after surgery, RESULTS: A median of 73.7% of amygdala, 70.9% of hippocampus, and 28.3% of entorhinal cortex was ablated. Engel class I surgical outcome was obtained in 79.5% and 67.4% of the 43 patients at 6 and 20.3 months of follow-up, respectively. No significant differences in surgical outcomes were found across patient subgroups (hemispheric dominance, hippocampal sclerosis, or need for intracranial evaluation). Furthermore, no significant differences in volumes ablated were found between patients with Engel class IA vs Engel class II-IV outcomes. In patients undergoing LITT in the dominant hemisphere, a decline in verbal and narrative memory, but not in naming function was noted. Significance Seizure-free outcomes following LITT may be comparable in carefully selected patients with and without MTS, and these outcomes are comparable with outcomes following microsurgical resection. Failures may result from non-mesial components of the epileptogenic network that are not affected by LITT. Cognitive declines following MTL-LITT are modest, and principally affect memory processes.

86 citations

Journal ArticleDOI
TL;DR: It is found that mid-fusiform cortex is the first brain region sensitive to lexicality, preceding the traditional visual word form area, and points to its central role as the orthographic lexicon—the long-term memory representations of visual word forms.
Abstract: Reading is a rapid, distributed process that engages multiple components of the ventral visual stream. To understand the neural constituents and their interactions that allow us to identify written words, we performed direct intra-cranial recordings in a large cohort of humans. This allowed us to isolate the spatiotemporal dynamics of visual word recognition across the entire left ventral occipitotemporal cortex. We found that mid-fusiform cortex is the first brain region sensitive to lexicality, preceding the traditional visual word form area. The magnitude and duration of its activation are driven by the statistics of natural language. Information regarding lexicality and word frequency propagates posteriorly from this region to visual word form regions and to earlier visual cortex, which, while active earlier, show sensitivity to words later. Further, direct electrical stimulation of this region results in reading arrest, further illustrating its crucial role in reading. This unique sensitivity of mid-fusiform cortex to sub-lexical and lexical characteristics points to its central role as the orthographic lexicon-the long-term memory representations of visual word forms.

62 citations

Journal ArticleDOI
TL;DR: Intracranial recordings in 37 patients using depth probes implanted along the anteroposterior extent of the supratemporal plane are obtained, revealing two predictive mechanisms in early auditory cortex with distinct anatomical and functional characteristics.
Abstract: Spoken language, both perception and production, is thought to be facilitated by an ensemble of predictive mechanisms. We obtain intracranial recordings in 37 patients using depth probes implanted along the anteroposterior extent of the supratemporal plane during rhythm listening, speech perception, and speech production. These reveal two predictive mechanisms in early auditory cortex with distinct anatomical and functional characteristics. The first, localized to bilateral Heschl's gyri and indexed by low-frequency phase, predicts the timing of acoustic events. The second, localized to planum temporale only in language-dominant cortex and indexed by high-gamma power, shows a transient response to acoustic stimuli that is uniquely suppressed during speech production. Chronometric stimulation of Heschl's gyrus selectively disrupts speech perception, while stimulation of planum temporale selectively disrupts speech production. This work illuminates the fundamental acoustic infrastructure-both architecture and function-for spoken language, grounding cognitive models of speech perception and production in human neurobiology.

43 citations

Journal ArticleDOI
TL;DR: The selective use of oblique trajectories during robotic implantation of sEEG electrodes to sample seizure networks was associated with excellent safety and efficacy, with no patient incidents, and the findings support the use of Oblique trajectory as an effective and safe means of investigating seizure networks.
Abstract: Objective Traditional stereo-electroencephalography (sEEG) entails the use of orthogonal trajectories guided by seizure semiology and arteriography. Advances in robotic stereotaxy and computerized neuronavigation have made oblique trajectories more feasible and easier to implement without formal arteriography. Such trajectories provide access to components of seizure networks not readily sampled using orthogonal trajectories. However, the dogma regarding the relative safety and predictability of orthogonal and azimuth-based trajectories persists, given the absence of data regarding the safety and efficacy of oblique sEEG trajectories. In this study, the authors evaluated the relative accuracy and efficacy of both orthogonal and oblique trajectories during robotic implantation of sEEG electrodes to sample seizure networks. Methods The authors performed a retrospective analysis of 150 consecutive procedures in 134 patients, accounting for 2040 electrode implantations. Of these, 837 (41%) were implanted via oblique trajectories (defined as an entry angle > 30°). Accuracy was calculated by comparing the deviation of each electrode at the entry and the target point from the planned trajectory using postimplantation imaging. Results The mean entry and target deviations were 1.57 mm and 1.89 mm for oblique trajectories compared with 1.38 mm and 1.69 mm for orthogonal trajectories, respectively. Entry point deviation was significantly associated with entry angle, but the impact of this relationship was negligible (-0.015-mm deviation per degree). Deviation at the target point was not significantly affected by the entry angle. No hemorrhagic or infectious complications were observed in the entire cohort, further suggesting that these differences were not meaningful in a clinical context. Of the patients who then underwent definitive procedures after sEEG, 69 patients had a minimum of 12 months of follow-up, of whom 58 (84%) achieved an Engel class I or II outcome during a median follow-up of 27 months. Conclusions The magnitude of stereotactic errors in this study falls squarely within the range reported in the sEEG literature, which primarily features orthogonal trajectories. The patient outcomes reported in this study suggest that seizure foci are well localized using oblique trajectories. Thus, the selective use of oblique trajectories in the authors' cohort was associated with excellent safety and efficacy, with no patient incidents, and the findings support the use of oblique trajectories as an effective and safe means of investigating seizure networks.

35 citations

Journal ArticleDOI
TL;DR: Direct intracranial recordings from the medial parietal cortex and the medial temporal lobe are performed, finding that the MPC is topologically tuned to face and scene recognition, with clusters in MPC performing scene recognition bilaterally and face recognition in right subparietal sulcus.

33 citations


Cited by
More filters
Journal Article
TL;DR: The results suggest that low-frequency oscillations play a functional role in human anticipatory mechanisms, presumably by modulating synchronized rhythmic fluctuations in the excitability of large neuronal populations and by facilitating efficient task-related neuronal communication among brain areas responsible for sensory processing and response execution.
Abstract: The more we anticipate a response to a predictable stimulus, the faster we react. This empirical observation has been confirmed and quantified by many investigators suggesting that the processing of behaviorally relevant stimuli is facilitated by probability-based confidence of anticipation. However, the exact neural mechanisms underlying this phenomenon are largely unknown. Here we show that performance changes related to different levels of expectancy originate in dynamic modulation of delta oscillation phase. Our results obtained in rhythmic auditory target detection tasks indicated significant entrainment of the EEG delta rhythm to the onset of the target tones with increasing phase synchronization at higher levels of predictability. Reaction times correlated with the phase of the delta band oscillation at target onset. The fastest reactions occurred during the delta phase that most commonly coincided with the target event in the high expectancy conditions. These results suggest that low-frequency oscillations play a functional role in human anticipatory mechanisms, presumably by modulating synchronized rhythmic fluctuations in the excitability of large neuronal populations and by facilitating efficient task-related neuronal communication among brain areas responsible for sensory processing and response execution.

301 citations

Journal ArticleDOI
TL;DR: This study provides Class IV evidence that brain-responsive neurostimulation significantly reduces focal seizures with acceptable safety over 9 years and provides significant and sustained reductions in the frequency of FOS with improved QOL.
Abstract: OBJECTIVE To prospectively evaluate safety and efficacy of brain-responsive neurostimulation in adults with medically intractable focal onset seizures (FOS) over 9 years. METHODS Adults treated with brain-responsive neurostimulation in 2-year feasibility or randomized controlled trials were enrolled in a long-term prospective open label trial (LTT) to assess safety, efficacy, and quality of life (QOL) over an additional 7 years. Safety was assessed as adverse events (AEs), efficacy as median percent change in seizure frequency and responder rate, and QOL with the Quality of Life in Epilepsy (QOLIE-89) inventory. RESULTS Of 256 patients treated in the initial trials, 230 participated in the LTT. At 9 years, the median percent reduction in seizure frequency was 75% (p < 0.0001, Wilcoxon signed rank), responder rate was 73%, and 35% had a ≥90% reduction in seizure frequency. We found that 18.4% (47 of 256) experienced ≥1 year of seizure freedom, with 62% (29 of 47) seizure-free at the last follow-up and an average seizure-free period of 3.2 years (range 1.04-9.6 years). Overall QOL and epilepsy-targeted and cognitive domains of QOLIE-89 remained significantly improved (p < 0.05). There were no serious AEs related to stimulation, and the sudden unexplained death in epilepsy (SUDEP) rate was significantly lower than predefined comparators (p < 0.05, 1-tailed χ2). CONCLUSIONS Adjunctive brain-responsive neurostimulation provides significant and sustained reductions in the frequency of FOS with improved QOL. Stimulation was well tolerated; implantation-related AEs were typical of other neurostimulation devices; and SUDEP rates were low. CLINICALTRIALSGOV IDENTIFIER NCT00572195. CLASSIFICATION OF EVIDENCE This study provides Class IV evidence that brain-responsive neurostimulation significantly reduces focal seizures with acceptable safety over 9 years.

213 citations

Journal ArticleDOI
TL;DR: A novel image‐based methodology for normalizing surgical therapies across a large multicenter cohort is leveraged to quantify the effects of surgical targeting on seizure outcomes in LITT for mTLE.
Abstract: Objective Laser interstitial thermal therapy (LITT) for mesial temporal lobe epilepsy (mTLE) has reported seizure freedom rates between 36% and 78% with at least 1 year of follow-up. Unfortunately, the lack of robust methods capable of incorporating the inherent variability of patient anatomy, the variability of the ablated volumes, and clinical outcomes have limited three-dimensional quantitative analysis of surgical targeting and its impact on seizure outcomes. We therefore aimed to leverage a novel image-based methodology for normalizing surgical therapies across a large multicenter cohort to quantify the effects of surgical targeting on seizure outcomes in LITT for mTLE. Methods This multicenter, retrospective cohort study included 234 patients from 11 centers who underwent LITT for mTLE. To investigate therapy location, all ablation cavities were manually traced on postoperative magnetic resonance imaging (MRI), which were subsequently nonlinearly normalized to a common atlas space. The association of clinical variables and ablation location to seizure outcome was calculated using multivariate regression and Bayesian models, respectively. Results Ablations including more anterior, medial, and inferior temporal lobe structures, which involved greater amygdalar volume, were more likely to be associated with Engel class I outcomes. At both 1 and 2 years after LITT, 58.0% achieved Engel I outcomes. A history of bilateral tonic-clonic seizures decreased chances of Engel I outcome. Radiographic hippocampal sclerosis was not associated with seizure outcome. Significance LITT is a viable treatment for mTLE in patients who have been properly evaluated at a comprehensive epilepsy center. Consideration of surgical factors is imperative to the complete assessment of LITT. Based on our model, ablations must prioritize the amygdala and also include the hippocampal head, parahippocampal gyrus, and rhinal cortices to maximize chances of seizure freedom. Extending the ablation posteriorly has diminishing returns. Further work is necessary to refine this analysis and define the minimal zone of ablation necessary for seizure control.

112 citations

Journal ArticleDOI
TL;DR: The relationships between ablation volumes and surgical or cognitive outcomes in 43 consecutive patients undergoing LITT for MTL epilepsy were evaluated.
Abstract: Objectives Laser interstitial thermal therapy (LITT) is a minimally invasive surgical technique for focal epilepsy. A major appeal of LITT is that it may result in fewer cognitive deficits, especially when targeting dominant hemisphere mesial temporal lobe (MTL) epilepsy. To evaluate this, as well as to determine seizure outcomes following LITT, we evaluated the relationships between ablation volumes and surgical or cognitive outcomes in 43 consecutive patients undergoing LITT for MTL epilepsy. Methods All patients underwent unilateral LITT targeting mesial temporal structures. FreeSurfer software was used to derive cortical and subcortical segmentation of the brain (especially subregions of the MTL) using preoperative magnetic resonance imaging (MRI). Ablation volumes were outlined using a postablation T1-contrasted MRI. The percentages of the amygdala, hippocampus, and entorhinal cortex ablated were quantified objectively. The volumetric measures were regressed against changes in neuropsychological performance before and after surgery, RESULTS: A median of 73.7% of amygdala, 70.9% of hippocampus, and 28.3% of entorhinal cortex was ablated. Engel class I surgical outcome was obtained in 79.5% and 67.4% of the 43 patients at 6 and 20.3 months of follow-up, respectively. No significant differences in surgical outcomes were found across patient subgroups (hemispheric dominance, hippocampal sclerosis, or need for intracranial evaluation). Furthermore, no significant differences in volumes ablated were found between patients with Engel class IA vs Engel class II-IV outcomes. In patients undergoing LITT in the dominant hemisphere, a decline in verbal and narrative memory, but not in naming function was noted. Significance Seizure-free outcomes following LITT may be comparable in carefully selected patients with and without MTS, and these outcomes are comparable with outcomes following microsurgical resection. Failures may result from non-mesial components of the epileptogenic network that are not affected by LITT. Cognitive declines following MTL-LITT are modest, and principally affect memory processes.

86 citations

Journal ArticleDOI
TL;DR: This paper analyzed the brain responses to 400 isolated sentences in a large cohort of 102 subjects, each recorded for two hours with functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG).
Abstract: Abstract Deep learning algorithms trained to predict masked words from large amount of text have recently been shown to generate activations similar to those of the human brain. However, what drives this similarity remains currently unknown. Here, we systematically compare a variety of deep language models to identify the computational principles that lead them to generate brain-like representations of sentences. Specifically, we analyze the brain responses to 400 isolated sentences in a large cohort of 102 subjects, each recorded for two hours with functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG). We then test where and when each of these algorithms maps onto the brain responses. Finally, we estimate how the architecture, training, and performance of these models independently account for the generation of brain-like representations. Our analyses reveal two main findings. First, the similarity between the algorithms and the brain primarily depends on their ability to predict words from context. Second, this similarity reveals the rise and maintenance of perceptual, lexical, and compositional representations within each cortical region. Overall, this study shows that modern language algorithms partially converge towards brain-like solutions, and thus delineates a promising path to unravel the foundations of natural language processing.

80 citations