scispace - formally typeset
Search or ask a question
Author

Patrick Sanz

Bio: Patrick Sanz is an academic researcher from Uniformed Services University of the Health Sciences. The author has contributed to research in topics: Bacillus anthracis & Spore germination. The author has an hindex of 8, co-authored 8 publications receiving 482 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is concluded that SOD molecules within the spore afford B. anthracis protection against oxidative stress and enhance the pathogenicity of B. Anthracis in the lung.
Abstract: The Bacillus anthracis genome encodes four superoxide dismutases (SODs), enzymes capable of detoxifying oxygen radicals. That two of these SODs, SOD15 and SODA1, are present in the outermost layers of the B. anthracis spore is indicated by previous proteomic analyses of the exosporium. Given the requirement that spores must survive interactions with reactive oxygen species generated by cells such as macrophages during infection, we hypothesized that SOD15 and SODA1 protect the spore from oxidative stress and contribute to the pathogenicity of B. anthracis. To test these theories, we constructed a double-knockout (Δsod15 ΔsodA1) mutant of B. anthracis Sterne strain 34F2 and assessed its lethality in an A/J mouse intranasal infection model. The 50% lethal dose of the Δsod15 ΔsodA1 strain was similar to that of the wild type (34F2), but surprisingly, measurable whole-spore SOD activity was greater than that in 34F2. A quadruple-knockout strain (Δsod15 ΔsodA1 ΔsodC ΔsodA2) was then generated, and as anticipated, spore-associated SOD activity was diminished. Moreover, the quadruple-knockout strain, compared to the wild type, was attenuated more than 40-fold upon intranasal challenge of mice. Spore resistance to exogenously generated oxidative stress and to macrophage-mediated killing correlated with virulence in A/J mice. Allelic exchange that restored sod15 and sodA1 to their wild-type state restored wild-type characteristics. We conclude that SOD molecules within the spore afford B. anthracis protection against oxidative stress and enhance the pathogenicity of B. anthracis in the lung. We also surmise that the presence of four SOD alleles within the genome provides functional redundancy for this key enzyme.

102 citations

Journal ArticleDOI
TL;DR: It is suggested that BclA acts as a shield to not only reduce the ease with which spores germinate but also change the surface properties of the spore, which, in turn, may impede the interaction with host matrix substances.
Abstract: Bacillus collagen-like protein of anthracis (BclA) is the immunodominant glycoprotein on the exosporium of Bacillus anthracis spores. Here, we sought to assess the impact of BclA on spore germination in vitro and in vivo, surface charge, and interaction with host matrix proteins. For that purpose, we constructed a markerless bclA null mutant in B. anthracis Sterne strain 34F2. The growth and sporulation rates of the ΔbclA and parent strains were nearly indistinguishable, but germination of mutant spores occurred more rapidly than that of wild-type spores in vitro and was more complete by 60 min. Additionally, the mean time to death of A/J mice inoculated subcutaneously or intranasally with mutant spores was lower than that for the wild-type spores even though the 50% lethal doses of the two strains were similar. We speculated that these in vitro and in vivo differences between mutant and wild-type spores might reflect the ease of access of germinants to their receptors in the absence of BclA. We also compared the hydrophobic and adhesive properties of ΔbclA and wild-type spores. The ΔbclA spores were markedly less water repellent than wild-type spores, and, probably as a consequence, the extracellular matrix proteins laminin and fibronectin bound significantly better to mutant than to wild-type spores. These studies suggest that BclA acts as a shield to not only reduce the ease with which spores germinate but also change the surface properties of the spore, which, in turn, may impede the interaction of the spore with host matrix substances.

95 citations

Journal ArticleDOI
TL;DR: It is concluded that in this animal system, the primary site of B. anthracis spore germination is the lungs, and that mediastinal lymph nodes remained nonluminescent throughout the infection.
Abstract: We sought to visualize the site of Bacillus anthracis spore germination in vivo. For that purpose, we constructed a reporter plasmid with the lux operon under control of the spore small acid-soluble protein B (sspB) promoter. In B. subtilis, sspB-driven synthesis of luciferase during sporulation results in incorporation of the enzyme in spores. We observed that B. anthracis Sterne transformed with our sspBp::lux plasmid was only luminescent during germination. In contrast, Sterne transformed with a similarly constructed plasmid with lux expression under control of the protective antigen promoter displayed luminescence only during vegetative growth. We then infected A/J mice intranasally with spores that harbored the germination reporter. Mice were monitored for up to 14 days with the Xenogen In Vivo Imaging System. While luminescence only became evident in live animals at 18 h, dissection after sacrificing infected mice at earlier time points revealed luminescence in lung tissue at 30 min after intranasal infection. Microscopic histochemical and immunofluorescence studies on luminescent lung sections and imprints revealed that macrophages were the first cells in contact with the B. anthracis spores. By 6 h after infection, polymorphonuclear leukocytes with intracellular spores were evident in the alveolar spaces. After 24 h, few free spores were observed in the alveolar spaces; most of the spores detected by immunofluorescence were in the cytoplasm of interstitial macrophages. In contrast, mediastinal lymph nodes remained nonluminescent throughout the infection. We conclude that in this animal system, the primary site of B. anthracis spore germination is the lungs.

70 citations

Journal ArticleDOI
TL;DR: This review seeks to summarize work that has been done to build on the current PA-based vaccine methodology and to evaluate the search for future anthrax prophylaxis strategies.

64 citations

Journal ArticleDOI
TL;DR: The concept of rBclA as being a safe and effective boost for a PA-primed individual against anthrax is supported and it is suggested that such rBClA-enhanced protection occurs by the induction of spore-opsonizing and germination-inhibiting antibodies.
Abstract: Bacillus collagen-like protein of anthracis (BclA) is an immunodominant glycoprotein located on the exosporium of Bacillus anthracis. We hypothesized that antibodies to this spore surface antigen are largely responsible for the augmented immunity to anthrax that has been reported for animals vaccinated with inactivated spores and protective antigen (PA) compared to vaccination with PA alone. To test this theory, we first evaluated the capacity of recombinant, histidine-tagged, nonglycosylated BclA (rBclA) given with adjuvant to protect A/J mice against 10 times the 50% lethal dose of Sterne strain spores introduced subcutaneously. Although the animals elicited anti-rBclA antibodies and showed a slight but statistically significant prolongation in the mean time to death (MTD), none of the mice survived. Similarly, rabbit anti-rBclA immunoglobulin G (IgG) administered intraperitoneally to mice before spore inoculation increased the MTD statistically significantly but afforded protection to only 1 of 10 animals. However, all mice that received suboptimal amounts of recombinant PA and that then received rBclA 2 weeks later survived spore challenge. Additionally, anti-rBclA IgG, compared to anti-PA IgG, promoted a sevenfold-greater uptake of opsonized spores by mouse macrophages and markedly decreased intramacrophage spore germination. Since BclA has some sequence similarity to human collagen, we also tested the extent of binding of anti-rBclA antibodies to human collagen types I, III, and V and found no discernible cross-reactivity. Taken together, these results support the concept of rBclA as being a safe and effective boost for a PA-primed individual against anthrax and further suggest that such rBclA-enhanced protection occurs by the induction of spore-opsonizing and germination-inhibiting antibodies.

56 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This study reviews the classic infections that are controlled by ROS and the cases in which ROS appear as promoters of infection, challenging the paradigm, and discusses the possible mechanisms by which ROS could promote particular infections.
Abstract: Reactive oxygen species (ROS) are deadly weapons used by phagocytes and other cell types, such as lung epithelial cells, against pathogens. ROS can kill pathogens directly by causing oxidative damage to biocompounds or indirectly by stimulating pathogen elimination by various nonoxidative mechanisms, including pattern recognition receptors signaling, autophagy, neutrophil extracellular trap formation, and T-lymphocyte responses. Thus, one should expect that the inhibition of ROS production promote infection. Increasing evidences support that in certain particular infections, antioxidants decrease and prooxidants increase pathogen burden. In this study, we review the classic infections that are controlled by ROS and the cases in which ROS appear as promoters of infection, challenging the paradigm. We discuss the possible mechanisms by which ROS could promote particular infections. These mechanisms are still not completely clear but include the metabolic effects of ROS on pathogen physiology, ROS-i...

393 citations

Journal ArticleDOI
TL;DR: This article compares and contrast B. anthracis, B. cereus, and B. thuringiensis, including ecology, cell structure and development, virulence attributes, gene regulation and genetic exchange systems, and experimental models of disease.
Abstract: The Bacillus cereus group includes several Bacillus species with closely related phylogeny. The most well-studied members of the group, B. anthracis, B. cereus, and B. thuringiensis, are known for their pathogenic potential. Here, we present the historical rationale for speciation and discuss shared and unique features of these bacteria. Aspects of cell morphology and physiology, and genome sequence similarity and gene synteny support close evolutionary relationships for these three species. For many strains, distinct differences in virulence factor synthesis provide facile means for species assignment. B. anthracis is the causative agent of anthrax. Some B. cereus strains are commonly recognized as food poisoning agents, but strains can also cause localized wound and eye infections as well as systemic disease. Certain B. thuringiensis strains are entomopathogens and have been commercialized for use as biopesticides, while some strains have been reported to cause infection in immunocompromised individuals. In this article we compare and contrast B. anthracis, B. cereus, and B. thuringiensis, including ecology, cell structure and development, virulence attributes, gene regulation and genetic exchange systems, and experimental models of disease.

278 citations

Journal ArticleDOI
TL;DR: The factors involved in spore resistance to agents such as wet and dry heat, desiccation, UV and γ-radiation, enzymes that hydrolyze bacterial cell walls, and a variety of toxic chemicals, including genotoxic agents, oxidizing agents, aldehydes, acid, and alkali are discussed.
Abstract: Spores of various Bacillus and Clostridium species are among the most resistant life forms known. Since the spores of some species are causative agents of much food spoilage, food poisoning, and human disease, and the spores of Bacillus anthracis are a major bioweapon, there is much interest in the mechanisms of spore resistance and how these spores can be killed. This article will discuss the factors involved in spore resistance to agents such as wet and dry heat, desiccation, UV and γ-radiation, enzymes that hydrolyze bacterial cell walls, and a variety of toxic chemicals, including genotoxic agents, oxidizing agents, aldehydes, acid, and alkali. These resistance factors include the outer layers of the spore, such as the thick proteinaceous coat that detoxifies reactive chemicals; the relatively impermeable inner spore membrane that restricts access of toxic chemicals to the spore core containing the spore's DNA and most enzymes; the low water content and high level of dipicolinic acid in the spore core that protect core macromolecules from the effects of heat and desiccation; the saturation of spore DNA with a novel group of proteins that protect the DNA against heat, genotoxic chemicals, and radiation; and the repair of radiation damage to DNA when spores germinate and return to life. Despite their extreme resistance, spores can be killed, including by damage to DNA, crucial spore proteins, the spore's inner membrane, and one or more components of the spore germination apparatus.

262 citations

Journal ArticleDOI
TL;DR: The results provide the first molecular definition of C. difficile spores, opening up new opportunities for the development of diagnostic and therapeutic approaches.
Abstract: Clostridium difficile, a major cause of antibiotic-associated diarrhea, produces highly resistant spores that contaminate hospital environments and facilitate efficient disease transmission. We purified C. difficile spores using a novel method and show that they exhibit significant resistance to harsh physical or chemical treatments and are also highly infectious, with <7 environmental spores per cm(2) reproducibly establishing a persistent infection in exposed mice. Mass spectrometric analysis identified approximately 336 spore-associated polypeptides, with a significant proportion linked to translation, sporulation/germination, and protein stabilization/degradation. In addition, proteins from several distinct metabolic pathways associated with energy production were identified. Comparison of the C. difficile spore proteome to those of other clostridial species defined 88 proteins as the clostridial spore "core" and 29 proteins as C. difficile spore specific, including proteins that could contribute to spore-host interactions. Thus, our results provide the first molecular definition of C. difficile spores, opening up new opportunities for the development of diagnostic and therapeutic approaches.

250 citations