scispace - formally typeset
Search or ask a question
Author

Patrick Varilly

Bio: Patrick Varilly is an academic researcher from University of Cambridge. The author has contributed to research in topics: Lattice QCD & Hydrophobic effect. The author has an hindex of 25, co-authored 36 publications receiving 14521 citations. Previous affiliations of Patrick Varilly include Massachusetts Institute of Technology & Broad Institute.

Papers
More filters
Journal ArticleDOI
John W. Belmont1, Andrew Boudreau, Suzanne M. Leal1, Paul Hardenbol  +229 moreInstitutions (40)
27 Oct 2005
TL;DR: A public database of common variation in the human genome: more than one million single nucleotide polymorphisms for which accurate and complete genotypes have been obtained in 269 DNA samples from four populations, including ten 500-kilobase regions in which essentially all information about common DNA variation has been extracted.
Abstract: Inherited genetic variation has a critical but as yet largely uncharacterized role in human disease. Here we report a public database of common variation in the human genome: more than one million single nucleotide polymorphisms (SNPs) for which accurate and complete genotypes have been obtained in 269 DNA samples from four populations, including ten 500-kilobase regions in which essentially all information about common DNA variation has been extracted. These data document the generality of recombination hotspots, a block-like structure of linkage disequilibrium and low haplotype diversity, leading to substantial correlations of SNPs with many of their neighbours. We show how the HapMap resource can guide the design and analysis of genetic association studies, shed light on structural variation and recombination, and identify loci that may have been subject to natural selection during human evolution.

5,479 citations

Journal ArticleDOI
18 Oct 2007-Nature
TL;DR: The Phase II HapMap is described, which characterizes over 3.1 million human single nucleotide polymorphisms genotyped in 270 individuals from four geographically diverse populations and includes 25–35% of common SNP variation in the populations surveyed, and increased differentiation at non-synonymous, compared to synonymous, SNPs is demonstrated.
Abstract: We describe the Phase II HapMap, which characterizes over 3.1 million human single nucleotide polymorphisms (SNPs) genotyped in 270 individuals from four geographically diverse populations and includes 25-35% of common SNP variation in the populations surveyed. The map is estimated to capture untyped common variation with an average maximum r2 of between 0.9 and 0.96 depending on population. We demonstrate that the current generation of commercial genome-wide genotyping products captures common Phase II SNPs with an average maximum r2 of up to 0.8 in African and up to 0.95 in non-African populations, and that potential gains in power in association studies can be obtained through imputation. These data also reveal novel aspects of the structure of linkage disequilibrium. We show that 10-30% of pairs of individuals within a population share at least one region of extended genetic identity arising from recent ancestry and that up to 1% of all common variants are untaggable, primarily because they lie within recombination hotspots. We show that recombination rates vary systematically around genes and between genes of different function. Finally, we demonstrate increased differentiation at non-synonymous, compared to synonymous, SNPs, resulting from systematic differences in the strength or efficacy of natural selection between populations.

4,565 citations

Journal ArticleDOI
Pardis C. Sabeti1, Pardis C. Sabeti2, Patrick Varilly1, Patrick Varilly2  +255 moreInstitutions (50)
18 Oct 2007-Nature
TL;DR: ‘Long-range haplotype’ methods, which were developed to identify alleles segregating in a population that have undergone recent selection, and new methods that are based on cross-population comparisons to discover alleles that have swept to near-fixation within a population are developed.
Abstract: With the advent of dense maps of human genetic variation, it is now possible to detect positive natural selection across the human genome. Here we report an analysis of over 3 million polymorphisms from the International HapMap Project Phase 2 (HapMap2). We used 'long-range haplotype' methods, which were developed to identify alleles segregating in a population that have undergone recent selection, and we also developed new methods that are based on cross-population comparisons to discover alleles that have swept to near-fixation within a population. The analysis reveals more than 300 strong candidate regions. Focusing on the strongest 22 regions, we develop a heuristic for scrutinizing these regions to identify candidate targets of selection. In a complementary analysis, we identify 26 non-synonymous, coding, single nucleotide polymorphisms showing regional evidence of positive selection. Examination of these candidates highlights three cases in which two genes in a common biological process have apparently undergone positive selection in the same population:LARGE and DMD, both related to infection by the Lassa virus, in West Africa;SLC24A5 and SLC45A2, both involved in skin pigmentation, in Europe; and EDAR and EDA2R, both involved in development of hair follicles, in Asia.

1,778 citations

Journal ArticleDOI
16 Jun 2006-Science
TL;DR: The authors reviewed approaches to detect positive natural selection in humans, described results from recent analyses of genome-wide data, and discuss the prospects and challenges ahead as we expand our understanding of the role of natural selection on shaping the human genome.
Abstract: Positive natural selection is the force that drives the increase in prevalence of advantageous traits, and it has played a central role in our development as a species. Until recently, the study of natural selection in humans has largely been restricted to comparing individual candidate genes to theoretical expectations. The advent of genome-wide sequence and polymorphism data brings fundamental new tools to the study of natural selection. It is now possible to identify new candidates for selection and to reevaluate previous claims by comparison with empirical distributions of DNA sequence variation across the human genome and among populations. The flood of data and analytical methods, however, raises many new challenges. Here, we review approaches to detect positive natural selection, describe results from recent analyses of genome-wide data, and discuss the prospects and challenges ahead as we expand our understanding of the role of natural selection in shaping the human genome.

1,088 citations

Journal ArticleDOI
TL;DR: The principal result is that the probability for density fluctuations of water near a hydrophobic surface, with or without surface water attractions, is akin to density fluctuations at the water-vapor interface.
Abstract: We use molecular dynamics simulations of the SPC-E model of liquid water to derive probability distributions for water density fluctuations in probe volumes of different shapes and sizes, both in the bulk as well as near hydrophobic and hydrophilic surfaces. Our results are obtained with a biased sampling of coarse-grained densities that is easily combined with molecular dynamics integration algorithms. Our principal result is that the probability for density fluctuations of water near a hydrophobic surface, with or without surface water attractions, is akin to density fluctuations at the water-vapor interface. Specifically, the probability of density depletion near the surface is significantly larger than that in the bulk, and this enhanced probability is responsible for hydrophobic forces of assembly. In contrast, we find that the statistics of water density fluctuations near a model hydrophilic surface are similar to that in the bulk.

276 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
Adam Auton1, Gonçalo R. Abecasis2, David Altshuler3, Richard Durbin4  +514 moreInstitutions (90)
01 Oct 2015-Nature
TL;DR: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations, and has reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-generation sequencing, deep exome sequencing, and dense microarray genotyping.
Abstract: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies.

12,661 citations

Journal Article
Fumio Tajima1
30 Oct 1989-Genomics
TL;DR: It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

11,521 citations

Journal ArticleDOI
TL;DR: This work describes a method that enables explicit detection and correction of population stratification on a genome-wide scale and uses principal components analysis to explicitly model ancestry differences between cases and controls.
Abstract: Population stratification—allele frequency differences between cases and controls due to systematic ancestry differences—can cause spurious associations in disease studies. We describe a method that enables explicit detection and correction of population stratification on a genome-wide scale. Our method uses principal components analysis to explicitly model ancestry differences between cases and controls. The resulting correction is specific to a candidate marker’s variation in frequency across ancestral populations, minimizing spurious associations while maximizing power to detect true associations. Our simple, efficient approach can easily be applied to disease studies with hundreds of thousands of markers. Population stratification—allele frequency differences between cases and controls due to systematic ancestry differences—can cause spurious associations in disease studies 1‐8 . Because the effects of stratification vary in proportion to the number of samples 9 , stratification will be an increasing problem in the large-scale association studies of the future, which will analyze thousands of samples in an effort to detect common genetic variants of weak effect. The two prevailing methods for dealing with stratification are genomic control and structured association 9‐14 . Although genomic control and structured association have proven useful in a variety of contexts, they have limitations. Genomic control corrects for stratification by adjusting association statistics at each marker by a uniform overall inflation factor. However, some markers differ in their allele frequencies across ancestral populations more than others. Thus, the uniform adjustment applied by genomic control may be insufficient at markers having unusually strong differentiation across ancestral populations and may be superfluous at markers devoid of such differentiation, leading to a loss in power. Structured association uses a program such as STRUCTURE 15 to assign the samples to discrete subpopulation clusters and then aggregates evidence of association within each cluster. If fractional membership in more than one cluster is allowed, the method cannot currently be applied to genome-wide association studies because of its intensive computational cost on large data sets. Furthermore, assignments of individuals to clusters are highly sensitive to the number of clusters, which is not well defined 14,16 .

9,387 citations