scispace - formally typeset
Search or ask a question
Author

Patrik R Kaufmann

Bio: Patrik R Kaufmann is an academic researcher from University of Bern. The author has contributed to research in topics: Ice core & Sea ice. The author has an hindex of 15, co-authored 32 publications receiving 4834 citations. Previous affiliations of Patrik R Kaufmann include Alfred Wegener Institute for Polar and Marine Research & Oeschger Centre for Climate Change Research.

Papers
More filters
Journal ArticleDOI
10 Jun 2004-Nature
TL;DR: The recovery of a deep ice core from Dome C, Antarctica, that provides a climate record for the past 740,000 years is reported, suggesting that without human intervention, a climate similar to the present one would extend well into the future.
Abstract: The Antarctic Vostok ice core provided compelling evidence of the nature of climate, and of climate feedbacks, over the past 420,000 years. Marine records suggest that the amplitude of climate variability was smaller before that time, but such records are often poorly resolved. Moreover, it is not possible to infer the abundance of greenhouse gases in the atmosphere from marine records. Here we report the recovery of a deep ice core from Dome C, Antarctica, that provides a climate record for the past 740,000 years. For the four most recent glacial cycles, the data agree well with the record from Vostok. The earlier period, between 740,000 and 430,000 years ago, was characterized by less pronounced warmth in interglacial periods in Antarctica, but a higher proportion of each cycle was spent in the warm mode. The transition from glacial to interglacial conditions about 430,000 years ago ( Termination V) resembles the transition into the present interglacial period in terms of the magnitude of change in temperatures and greenhouse gases, but there are significant differences in the patterns of change. The interglacial stage following Termination V was exceptionally long - 28,000 years compared to, for example, the 12,000 years recorded so far in the present interglacial period. Given the similarities between this earlier warm period and today, our results may imply that without human intervention, a climate similar to the present one would extend well into the future.

1,995 citations

Journal ArticleDOI
Carlo Barbante1, J. M. Barnola1, J. M. Barnola2, Silvia Becagli1, J. Beer3, J. Beer1, M. Bigler1, Claude F. Boutron1, Claude F. Boutron2, Thomas Blunier1, E. Castellano1, Olivier Cattani, Jérôme Chappellaz2, Jérôme Chappellaz1, Dorthe Dahl-Jensen1, Maxime Debret2, Barbara Delmonte, D. Dick, S. Falourd, Sérgio H. Faria1, Urs Federer1, Hubertus Fischer, Johannes Freitag, Andreas Frenzel, Diedrich Fritzsche, Felix Fundel, Paolo Gabrielli2, Vania Gaspari, Rainer Gersonde, Wolfgang Graf, D. Grigoriev4, Ilka Hamann, Margareta Hansson, George R. Hoffmann, Hutterli5, Philippe Huybrechts, Elisabeth Isaksson6, Sigfus J Johnsen, Jean Jouzel, M. Kaczmarska6, Torbjörn Karlin, Patrik R Kaufmann, S. Kipfstuhl, Mika Kohno, Fabrice Lambert, Astrid Lambrecht, Amaelle Landais, Gunther Lawer, Markus Leuenberger, Geneviève C Littot5, L. Loulergue2, Dieter Lüthi, Valter Maggi, F. Marino, Valérie Masson-Delmotte, Hanno Meyer, Heinrich Miller, Robert Mulvaney5, Biancamaria Narcisi, Johannes Oerlemans, H. Oerter, Frédéric Parrenin2, J. R. Petit2, Grant M. Raisbeck, Dominique Raynaud2, Regine Röthlisberger5, U. Ruth, Oleg Rybak, Mirko Severi, Jochen Schmitt, Jakob Schwander, Urs Siegenthaler, M.-L. Siggaard-Andersen1, Renato Spahni, Jørgen Peder Steffensen1, Barbara Stenni7, Thomas F. Stocker, Jean-Louis Tison, Rita Traversi, Roberto Udisti, Fernando Valero-Delgado, M. R. van den Broeke, R. S. W. van de Wal, Dietmar Wagenbach, Anna Wegner, K. Weiler, Frank Wilhelms, Jan-Gunnar Winther6, Eric W. Wolff5 
09 Nov 2006-Nature
TL;DR: In this paper, a glacial climate record derived from an ice core from Dronning Maud Land, Antarctica, which represents South Atlantic climate at a resolution comparable with the Greenland ice core records was presented.
Abstract: Precise knowledge of the phase relationship between climate changes in the two hemispheres is a key for understanding the Earth's climate dynamics. For the last glacial period, ice core studies1, 2 have revealed strong coupling of the largest millennial-scale warm events in Antarctica with the longest Dansgaard–Oeschger events in Greenland3, 4, 5 through the Atlantic meridional overturning circulation6, 7, 8. It has been unclear, however, whether the shorter Dansgaard–Oeschger events have counterparts in the shorter and less prominent Antarctic temperature variations, and whether these events are linked by the same mechanism. Here we present a glacial climate record derived from an ice core from Dronning Maud Land, Antarctica, which represents South Atlantic climate at a resolution comparable with the Greenland ice core records. After methane synchronization with an ice core from North Greenland9, the oxygen isotope record from the Dronning Maud Land ice core shows a one-to-one coupling between all Antarctic warm events and Greenland Dansgaard–Oeschger events by the bipolar seesaw6. The amplitude of the Antarctic warm events is found to be linearly dependent on the duration of the concurrent stadial in the North, suggesting that they all result from a similar reduction in the meridional overturning circulation.

1,074 citations

Journal ArticleDOI
03 Apr 2008-Nature
TL;DR: It is proposed that the observed ∼25-fold increase in glacial dust flux over all eight glacial periods can be attributed to a strengthening of South American dust sources, together with a longer lifetime for atmospheric dust particles in the upper troposphere resulting from a reduced hydrological cycle during the ice ages.
Abstract: Dust can affect the radiative balance of the atmosphere by absorbing or reflecting incoming solar radiation; it can also be a source of micronutrients, such as iron, to the ocean. It has been suggested that production, transport and deposition of dust is influenced by climatic changes on glacial-interglacial timescales. Here we present a high-resolution record of aeolian dust from the EPICA Dome C ice core in East Antarctica, which provides an undisturbed climate sequence over the past eight climatic cycles. We find that there is a significant correlation between dust flux and temperature records during glacial periods that is absent during interglacial periods. Our data suggest that dust flux is increasingly correlated with Antarctic temperature as the climate becomes colder. We interpret this as progressive coupling of the climates of Antarctic and lower latitudes. Limited changes in glacial-interglacial atmospheric transport time suggest that the sources and lifetime of dust are the main factors controlling the high glacial dust input. We propose that the observed approximately 25-fold increase in glacial dust flux over all eight glacial periods can be attributed to a strengthening of South American dust sources, together with a longer lifetime for atmospheric dust particles in the upper troposphere resulting from a reduced hydrological cycle during the ice ages.

613 citations

Journal ArticleDOI
23 Mar 2006-Nature
TL;DR: Continuous chemical proxy data spanning the last eight glacial cycles from the Dome C Antarctic ice core constrain winter sea-ice extent in the Indian Ocean, Southern Ocean biogenic productivity and Patagonian climatic conditions and observe large glacial–interglacial contrasts in iron deposition, which is infer reflects strongly changing Patagonia conditions.
Abstract: Sea ice and dust flux increased greatly in the Southern Ocean during the last glacial period. Palaeorecords provide contradictory evidence about marine productivity in this region, but beyond one glacial cycle, data were sparse. Here we present continuous chemical proxy data spanning the last eight glacial cycles (740,000 years) from the Dome C Antarctic ice core. These data constrain winter sea-ice extent in the Indian Ocean, Southern Ocean biogenic productivity and Patagonian climatic conditions. We found that maximum sea-ice extent is closely tied to Antarctic temperature on multi-millennial timescales, but less so on shorter timescales. Biological dimethylsulphide emissions south of the polar front seem to have changed little with climate, suggesting that sulphur compounds were not active in climate regulation. We observe large glacial-interglacial contrasts in iron deposition, which we infer reflects strongly changing Patagonian conditions. During glacial terminations, changes in Patagonia apparently preceded sea-ice reduction, indicating that multiple mechanisms may be responsible for different phases of CO2 increase during glacial terminations. We observe no changes in internal climatic feedbacks that could have caused the change in amplitude of Antarctic temperature variations observed 440,000 years ago.

516 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a 53-Myr stack (LR04) of benthic δ18O records from 57 globally distributed sites aligned by an automated graphic correlation algorithm is presented.
Abstract: [1] We present a 53-Myr stack (the “LR04” stack) of benthic δ18O records from 57 globally distributed sites aligned by an automated graphic correlation algorithm This is the first benthic δ18O stack composed of more than three records to extend beyond 850 ka, and we use its improved signal quality to identify 24 new marine isotope stages in the early Pliocene We also present a new LR04 age model for the Pliocene-Pleistocene derived from tuning the δ18O stack to a simple ice model based on 21 June insolation at 65°N Stacked sedimentation rates provide additional age model constraints to prevent overtuning Despite a conservative tuning strategy, the LR04 benthic stack exhibits significant coherency with insolation in the obliquity band throughout the entire 53 Myr and in the precession band for more than half of the record The LR04 stack contains significantly more variance in benthic δ18O than previously published stacks of the late Pleistocene as the result of higher-resolution records, a better alignment technique, and a greater percentage of records from the Atlantic Finally, the relative phases of the stack's 41- and 23-kyr components suggest that the precession component of δ18O from 27–16 Ma is primarily a deep-water temperature signal and that the phase of δ18O precession response changed suddenly at 16 Ma

6,186 citations

Journal ArticleDOI
14 Dec 2007-Science
TL;DR: As the International Year of the Reef 2008 begins, scaled-up management intervention and decisive action on global emissions are required if the loss of coral-dominated ecosystems is to be avoided.
Abstract: Atmospheric carbon dioxide concentration is expected to exceed 500 parts per million and global temperatures to rise by at least 2 degrees C by 2050 to 2100, values that significantly exceed those of at least the past 420,000 years during which most extant marine organisms evolved. Under conditions expected in the 21st century, global warming and ocean acidification will compromise carbonate accretion, with corals becoming increasingly rare on reef systems. The result will be less diverse reef communities and carbonate reef structures that fail to be maintained. Climate change also exacerbates local stresses from declining water quality and overexploitation of key species, driving reefs increasingly toward the tipping point for functional collapse. This review presents future scenarios for coral reefs that predict increasingly serious consequences for reef-associated fisheries, tourism, coastal protection, and people. As the International Year of the Reef 2008 begins, scaled-up management intervention and decisive action on global emissions are required if the loss of coral-dominated ecosystems is to be avoided.

4,422 citations

Journal ArticleDOI
07 Aug 2009-Science
TL;DR: The responses of the Northern and Southern Hemispheres differed significantly, which reveals how the evolution of specific ice sheets affected sea level and provides insight into how insolation controlled the deglaciation.
Abstract: We used 5704 14C, 10Be, and 3He ages that span the interval from 10,000 to 50,000 years ago (10 to 50 ka) to constrain the timing of the Last Glacial Maximum (LGM) in terms of global ice-sheet and mountain-glacier extent. Growth of the ice sheets to their maximum positions occurred between 33.0 and 26.5 ka in response to climate forcing from decreases in northern summer insolation, tropical Pacific sea surface temperatures, and atmospheric CO2. Nearly all ice sheets were at their LGM positions from 26.5 ka to 19 to 20 ka, corresponding to minima in these forcings. The onset of Northern Hemisphere deglaciation 19 to 20 ka was induced by an increase in northern summer insolation, providing the source for an abrupt rise in sea level. The onset of deglaciation of the West Antarctic Ice Sheet occurred between 14 and 15 ka, consistent with evidence that this was the primary source for an abrupt rise in sea level ~14.5 ka.

2,691 citations

Journal ArticleDOI
TL;DR: This work uses atmospheric carbon dioxide concentration as a single, simple indicator to track the progression of the Anthropocene, the current epoch in which humans and the authors' societies have become a global geophysical force.
Abstract: We explore the development of the Anthropocene, the current epoch in which humans and our societies have become a global geophysical force. The Anthropocene began around 1800 with the onset of industrialization, the central feature of which was the enormous expansion in the use of fossil fuels. We use atmospheric carbon dioxide concentration as a single, simple indicator to track the progression of the Anthropocene. From a preindustrial value of 270-275 ppm, atmospheric carbon dioxide had risen to about 310 ppm by 1950. Since then the human enterprise has experienced a remarkable explosion, the Great Acceleration, with significant consequences for Earth System functioning. Atmospheric CO2 concentration has risen from 310 to 380 ppm since 1950, with about half of the total rise since the preindustrial era occurring in just the last 30 years. The Great Acceleration is reaching criticality. Whatever unfolds, the next few decades will surely be a tipping point in the evolution of the Anthropocene.

2,585 citations

Journal ArticleDOI
24 Apr 2009-Science
TL;DR: What is known and what is needed to develop a holistic understanding of the role of fire in the Earth system are reviewed, particularly in view of the pervasive impact of fires and the likelihood that they will become increasingly difficult to control as climate changes.
Abstract: Fire is a worldwide phenomenon that appears in the geological record soon after the appearance of terrestrial plants. Fire influences global ecosystem patterns and processes, including vegetation distribution and structure, the carbon cycle, and climate. Although humans and fire have always coexisted, our capacity to manage fire remains imperfect and may become more difficult in the future as climate change alters fire regimes. This risk is difficult to assess, however, because fires are still poorly represented in global models. Here, we discuss some of the most important issues involved in developing a better understanding of the role of fire in the Earth system.

2,365 citations