scispace - formally typeset
Search or ask a question
Author

Paul A. Christensen

Other affiliations: Cornell University
Bio: Paul A. Christensen is an academic researcher from Houston Methodist Hospital. The author has contributed to research in topics: Population & Cervical cancer. The author has an hindex of 13, co-authored 37 publications receiving 886 citations. Previous affiliations of Paul A. Christensen include Cornell University.

Papers
More filters
Journal ArticleDOI
TL;DR: Administration of convalescent plasma is a safe treatment option for those with severe COVID-19 disease, and whole genome sequencing data did not identify a strain genotype-disease severity correlation.
Abstract: Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2, has spread globally, and no proven treatments are available. Convalescent plasma therapy has been used with varying degrees of success to treat severe microbial infections for >100 years. Patients (n = 25) with severe and/or life-threatening COVID-19 disease were enrolled at the Houston Methodist hospitals from March 28, 2020, to April 14, 2020. Patients were transfused with convalescent plasma, obtained from donors with confirmed severe acute respiratory syndrome coronavirus 2 infection who had recovered. The primary study outcome was safety, and the secondary outcome was clinical status at day 14 after transfusion. Clinical improvement was assessed on the basis of a modified World Health Organization six-point ordinal scale and laboratory parameters. Viral genome sequencing was performed on donor and recipient strains. At day 7 after transfusion with convalescent plasma, nine patients had at least a one-point improvement in clinical scale, and seven of those were discharged. By day 14 after transfusion, 19 (76%) patients had at least a one-point improvement in clinical status, and 11 were discharged. No adverse events as a result of plasma transfusion were observed. Whole genome sequencing data did not identify a strain genotype-disease severity correlation. The data indicate that administration of convalescent plasma is a safe treatment option for those with severe COVID-19 disease.

231 citations

Journal ArticleDOI
TL;DR: Treatment of COVID-19 with high anti-receptor binding domain (RBD) IgG titer convalescent plasma is efficacious in early-disease patients, and a significant reduction in mortality within 28 days is shown.
Abstract: Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2, has spread globally, and proven treatments are limited. Transfusion of convalescent plasma collected from donors who have recovered from COVID-19 is among many approaches being studied as potentially efficacious therapy. We are conducting a prospective, propensity score-matched study assessing the efficacy of COVID-19 convalescent plasma transfusion versus standard of care as treatment for severe and/or critical COVID-19. We present herein the results of an interim analysis of 316 patients enrolled at Houston Methodist hospitals from March 28 to July 6, 2020. Of the 316 transfused patients, 136 met a 28-day outcome and were matched to 251 non-transfused control COVID-19 patients. Matching criteria included age, sex, body mass index, comorbidities, and baseline ventilation requirement 48 hours from admission, and in a second matching analysis, ventilation status at day 0. Variability in the timing of transfusion relative to admission and titer of antibodies of plasma transfused allowed for analysis in specific matched cohorts. The analysis showed a significant reduction (P = 0.047) in mortality within 28 days, specifically in patients transfused within 72 hours of admission with plasma with an anti-spike protein receptor binding domain titer of ≥1:1350. These data suggest that treatment of COVID-19 with high anti-receptor binding domain IgG titer convalescent plasma is efficacious in early-disease patients.

201 citations

Journal ArticleDOI
TL;DR: It is concluded that anti-RBD or anti-ECD IgG titers can serve as a surrogate for VN titers to identify suitable plasma donors to provide critical information about protection against COVID-19 disease.
Abstract: The newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highlights the urgent need for assays that detect protective levels of neutralizing antibodies. We studied the relationship among anti-spike ectodomain (anti-ECD), anti-receptor-binding domain (anti-RBD) IgG titers, and SARS-CoV-2 virus neutralization (VN) titers generated by 2 in vitro assays using convalescent plasma samples from 68 patients with COVID-19. We report a strong positive correlation between both plasma anti-RBD and anti-ECD IgG titers and in vitro VN titers. The probability of a VN titer of ≥160, the FDA-recommended level for convalescent plasma used for COVID-19 treatment, was ≥80% when anti-RBD or anti-ECD titers were ≥1:1350. Of all donors, 37% lacked VN titers of ≥160. Dyspnea, hospitalization, and disease severity were significantly associated with higher VN titer. Frequent donation of convalescent plasma did not significantly decrease VN or IgG titers. Analysis of 2814 asymptomatic adults found 73 individuals with anti-ECD IgG titers of ≥1:50 and strong positive correlation with anti-RBD and VN titers. Fourteen of these individuals had VN titers of ≥1:160, and all of them had anti-RBD titers of ≥1:1350. We conclude that anti-RBD or anti-ECD IgG titers can serve as a surrogate for VN titers to identify suitable plasma donors. Plasma anti-RBD or anti-ECD titers of ≥1:1350 may provide critical information about protection against COVID-19 disease.

156 citations

Journal ArticleDOI
TL;DR: In this article , a genome sequencing study of SARS-CoV-2 in the Houston Methodist health care system identified 4468 symptomatic patients with infections caused by Omicron (B.1.529) from late November 2021 through January 5, 2022.
Abstract: Genetic variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue to dramatically alter the landscape of the coronavirus disease 2019 (COVID-19) pandemic. The recently described variant of concern designated Omicron (B.1.1.529) has rapidly spread worldwide and is now responsible for the majority of COVID-19 cases in many countries. Because Omicron was recognized recently, many knowledge gaps exist about its epidemiology, clinical severity, and disease course. A genome sequencing study of SARS-CoV-2 in the Houston Methodist health care system identified 4468 symptomatic patients with infections caused by Omicron from late November 2021 through January 5, 2022. Omicron rapidly increased in only 3 weeks to cause 90% of all new COVID-19 cases, and at the end of the study period caused 98% of new cases. Compared with patients infected with either Alpha or Delta variants in our health care system, Omicron patients were significantly younger, had significantly increased vaccine breakthrough rates, and were significantly less likely to be hospitalized. Omicron patients required less intense respiratory support and had a shorter length of hospital stay, consistent with on average decreased disease severity. Two patients with Omicron stealth sublineage BA.2 also were identified. The data document the unusually rapid spread and increased occurrence of COVID-19 caused by the Omicron variant in metropolitan Houston, Texas, and address the lack of information about disease character among US patients.

148 citations

Journal ArticleDOI
TL;DR: The analysis confirms and extends the previous preliminary finding that transfusion of COVID-19 patients soon after hospitalization with high-titer anti-spike protein RBD IgG present in convalescent plasma significantly reduces mortality.
Abstract: Coronavirus disease 2019 (COVID-19) convalescent plasma has emerged as a promising therapy and has been granted Emergency Use Authorization by the US Food and Drug Administration for hospitalized COVID-19 patients. We recently reported results from interim analysis of a propensity score-matched study suggesting that early treatment of COVID-19 patients with convalescent plasma containing high-titer anti-spike protein receptor binding domain (RBD) IgG significantly decreases mortality. We herein present results from a 60-day follow-up of a cohort of 351 transfused hospitalized patients. Prospective determination of enzyme-linked immunosorbent assay anti-RBD IgG titer facilitated selection and transfusion of the highest titer units available. Retrospective analysis by the Ortho VITROS IgG assay revealed a median signal/cutoff ratio of 24.0 for transfused units, a value far exceeding the recent US Food and Drug Administration-required cutoff of 12.0 for designation of high-titer convalescent plasma. With respect to altering mortality, our analysis identified an optimal window of 44 hours after hospitalization for transfusing COVID-19 patients with high-titer convalescent plasma. In the aggregate, the analysis confirms and extends our previous preliminary finding that transfusion of COVID-19 patients soon after hospitalization with high-titer anti-spike protein RBD IgG present in convalescent plasma significantly reduces mortality.

127 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The data show that remdesivir was superior to placebo in shortening the time to recovery in adults who were hospitalized with Covid-19 and had evidence of lower respiratory tract infection.
Abstract: Background Although several therapeutic agents have been evaluated for the treatment of coronavirus disease 2019 (Covid-19), none have yet been shown to be efficacious. Methods We conducte...

5,532 citations

25 Apr 2017
TL;DR: This presentation is a case study taken from the travel and holiday industry and describes the effectiveness of various techniques as well as the performance of Python-based libraries such as Python Data Analysis Library (Pandas), and Scikit-learn (built on NumPy, SciPy and matplotlib).
Abstract: This presentation is a case study taken from the travel and holiday industry. Paxport/Multicom, based in UK and Sweden, have recently adopted a recommendation system for holiday accommodation bookings. Machine learning techniques such as Collaborative Filtering have been applied using Python (3.5.1), with Jupyter (4.0.6) as the main framework. Data scale and sparsity present significant challenges in the case study, and so the effectiveness of various techniques are described as well as the performance of Python-based libraries such as Python Data Analysis Library (Pandas), and Scikit-learn (built on NumPy, SciPy and matplotlib). The presentation is suitable for all levels of programmers.

1,338 citations

Journal ArticleDOI
04 Aug 2020-JAMA
TL;DR: Among patients with severe or life-threatening COVID-19, convalescent plasma therapy added to standard treatment, compared with standard treatment alone, did not result in a statistically significant improvement in time to clinical improvement within 28 days.
Abstract: Importance Convalescent plasma is a potential therapeutic option for patients with coronavirus disease 2019 (COVID-19), but further data from randomized clinical trials are needed. Objective To evaluate the efficacy and adverse effects of convalescent plasma therapy for patients with COVID-19. Design, Setting, and Participants Open-label, multicenter, randomized clinical trial performed in 7 medical centers in Wuhan, China, from February 14, 2020, to April 1, 2020, with final follow-up April 28, 2020. The trial included 103 participants with laboratory-confirmed COVID-19 that was severe (respiratory distress and/or hypoxemia) or life-threatening (shock, organ failure, or requiring mechanical ventilation). The trial was terminated early after 103 of a planned 200 patients were enrolled. Intervention Convalescent plasma in addition to standard treatment (n = 52) vs standard treatment alone (control) (n = 51), stratified by disease severity. Main Outcomes and Measures Primary outcome was time to clinical improvement within 28 days, defined as patient discharged alive or reduction of 2 points on a 6-point disease severity scale (ranging from 1 [discharge] to 6 [death]). Secondary outcomes included 28-day mortality, time to discharge, and the rate of viral polymerase chain reaction (PCR) results turned from positive at baseline to negative at up to 72 hours. Results Of 103 patients who were randomized (median age, 70 years; 60 [58.3%] male), 101 (98.1%) completed the trial. Clinical improvement occurred within 28 days in 51.9% (27/52) of the convalescent plasma group vs 43.1% (22/51) in the control group (difference, 8.8% [95% CI, −10.4% to 28.0%]; hazard ratio [HR], 1.40 [95% CI, 0.79-2.49];P = .26). Among those with severe disease, the primary outcome occurred in 91.3% (21/23) of the convalescent plasma group vs 68.2% (15/22) of the control group (HR, 2.15 [95% CI, 1.07-4.32];P = .03); among those with life-threatening disease the primary outcome occurred in 20.7% (6/29) of the convalescent plasma group vs 24.1% (7/29) of the control group (HR, 0.88 [95% CI, 0.30-2.63];P = .83) (Pfor interaction = .17). There was no significant difference in 28-day mortality (15.7% vs 24.0%; OR, 0.59 [95% CI, 0.22-1.59];P = .30) or time from randomization to discharge (51.0% vs 36.0% discharged by day 28; HR, 1.61 [95% CI, 0.88-2.95];P = .12). Convalescent plasma treatment was associated with a negative conversion rate of viral PCR at 72 hours in 87.2% of the convalescent plasma group vs 37.5% of the control group (OR, 11.39 [95% CI, 3.91-33.18];P Conclusion and Relevance Among patients with severe or life-threatening COVID-19, convalescent plasma therapy added to standard treatment, compared with standard treatment alone, did not result in a statistically significant improvement in time to clinical improvement within 28 days. Interpretation is limited by early termination of the trial, which may have been underpowered to detect a clinically important difference. Trial Registration Chinese Clinical Trial Registry:ChiCTR2000029757

1,112 citations

Journal ArticleDOI
TL;DR: In this article, structural and cellular foundations for understanding the multistep SARS-CoV-2 entry process, including S protein synthesis, S protein structure, conformational transitions necessary for association of the spike (S) protein with ACE2, engagement of the receptor-binding domain of the S protein with ACS, proteolytic activation of S protein, endocytosis and membrane fusion are provided.
Abstract: The unprecedented public health and economic impact of the COVID-19 pandemic caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been met with an equally unprecedented scientific response. Much of this response has focused, appropriately, on the mechanisms of SARS-CoV-2 entry into host cells, and in particular the binding of the spike (S) protein to its receptor, angiotensin-converting enzyme 2 (ACE2), and subsequent membrane fusion. This Review provides the structural and cellular foundations for understanding the multistep SARS-CoV-2 entry process, including S protein synthesis, S protein structure, conformational transitions necessary for association of the S protein with ACE2, engagement of the receptor-binding domain of the S protein with ACE2, proteolytic activation of the S protein, endocytosis and membrane fusion. We define the roles of furin-like proteases, transmembrane protease, serine 2 (TMPRSS2) and cathepsin L in these processes, and delineate the features of ACE2 orthologues in reservoir animal species and S protein adaptations that facilitate efficient human transmission. We also examine the utility of vaccines, antibodies and other potential therapeutics targeting SARS-CoV-2 entry mechanisms. Finally, we present key outstanding questions associated with this critical process.

988 citations

Journal ArticleDOI
TL;DR: In this paper, a randomized, double-blind, placebo-controlled trial of convalescent plasma with high IgG titers against SARS-CoV-2 in older adult patients within 72 hours after the onset of mild Covid-19 symptoms was conducted.
Abstract: Background Therapies to interrupt the progression of early coronavirus disease 2019 (Covid-19) remain elusive. Among them, convalescent plasma administered to hospitalized patients has been unsuccessful, perhaps because antibodies should be administered earlier in the course of illness. Methods We conducted a randomized, double-blind, placebo-controlled trial of convalescent plasma with high IgG titers against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in older adult patients within 72 hours after the onset of mild Covid-19 symptoms. The primary end point was severe respiratory disease, defined as a respiratory rate of 30 breaths per minute or more, an oxygen saturation of less than 93% while the patient was breathing ambient air, or both. The trial was stopped early at 76% of its projected sample size because cases of Covid-19 in the trial region decreased considerably and steady enrollment of trial patients became virtually impossible. Results A total of 160 patients underwent randomization. In the intention-to-treat population, severe respiratory disease developed in 13 of 80 patients (16%) who received convalescent plasma and 25 of 80 patients (31%) who received placebo (relative risk, 0.52; 95% confidence interval [CI], 0.29 to 0.94; P = 0.03), with a relative risk reduction of 48%. A modified intention-to-treat analysis that excluded 6 patients who had a primary end-point event before infusion of convalescent plasma or placebo showed a larger effect size (relative risk, 0.40; 95% CI, 0.20 to 0.81). No solicited adverse events were observed. Conclusions Early administration of high-titer convalescent plasma against SARS-CoV-2 to mildly ill infected older adults reduced the progression of Covid-19. (Funded by the Bill and Melinda Gates Foundation and the Fundacion INFANT Pandemic Fund; Direccion de Sangre y Medicina Transfusional del Ministerio de Salud number, PAEPCC19, Plataforma de Registro Informatizado de Investigaciones en Salud number, 1421, and ClinicalTrials.gov number, NCT04479163.).

653 citations