scispace - formally typeset
Search or ask a question
Author

Paul A. Johnson

Bio: Paul A. Johnson is an academic researcher from Laval University. The author has contributed to research in topics: Geminal & Ansatz. The author has an hindex of 16, co-authored 38 publications receiving 3126 citations. Previous affiliations of Paul A. Johnson include National Institute for Nanotechnology & Carleton University.

Papers
More filters
Journal ArticleDOI
17 Apr 2019-Joule
TL;DR: In this paper, a ladder-type electron-deficient core-based central fused ring (Dithienothiophen[3.2-b]- pyrrolobenzothiadiazole) with a benzothiadiadiazoles (BT) core was proposed to fine-tune its absorption and electron affinity.

3,513 citations

Journal ArticleDOI
TL;DR: A new n-OS acceptor, Y5, with an electron-deficient-core-based fused structure is designed and synthesized, which exhibits a strong absorption in the 600-900 nm region with an extinction coefficient of 1.24 × 105 cm-1 and an electron mobility of 2.11 × 10-4 cm2 V-1 s-1, which indicates that Y5 is a universal and highly efficient n- OS acceptor for applications in organic solar cells.
Abstract: Narrow bandgap n-type organic semiconductors (n-OS) have attracted great attention in recent years as acceptors in organic solar cells (OSCs), due to their easily tuned absorption and electronic energy levels in comparison with fullerene acceptors. Herein, a new n-OS acceptor, Y5, with an electron-deficient-core-based fused structure is designed and synthesized, which exhibits a strong absorption in the 600-900 nm region with an extinction coefficient of 1.24 × 105 cm-1 , and an electron mobility of 2.11 × 10-4 cm2 V-1 s-1 . By blending Y5 with three types of common medium-bandgap polymers (J61, PBDB-T, and TTFQx-T1) as donors, all devices exhibit high short-circuit current densities over 20 mA cm-2 . As a result, the power conversion efficiency of the Y5-based OSCs with J61, TTFQx-T1, and PBDB-T reaches 11.0%, 13.1%, and 14.1%, respectively. This indicates that Y5 is a universal and highly efficient n-OS acceptor for applications in organic solar cells.

272 citations

Journal ArticleDOI
TL;DR: This work focuses on an approach where, in each geminal, only one of the orbitals in a reference Slater determinant is occupied, and gives good results for atoms and small molecules.
Abstract: We propose an approach to the electronic structure problem based on noninteracting electron pairs that has similar computational cost to conventional methods based on noninteracting electrons. In stark contrast to other approaches, the wave function is an antisymmetric product of nonorthogonal geminals, but the geminals are structured so the projected Schrodinger equation can be solved very efficiently. We focus on an approach where, in each geminal, only one of the orbitals in a reference Slater determinant is occupied. The resulting method gives good results for atoms and small molecules. It also performs well for a prototypical example of strongly correlated electronic systems, the hydrogen atom chain.

176 citations

Journal ArticleDOI
TL;DR: Inspired by the wave function forms of exactly solvable algebraic Hamiltonians, this article presented several wave function ansatze for two-electron systems; they are size consistent; they include the (generalized) antisymmetrized geminal power, and a Slater determinant wavefunctions as special cases, and they can be solved with no greater than O(N5) scaling if all electrons are assumed to be paired, and with O (N6) scaling otherwise.

91 citations

Journal ArticleDOI
TL;DR: This study indicates that these new geminal-based approaches provide a cheap, robust, and accurate alternative for the description of bond-breaking processes in closed-shell systems requiring only mean-field-like computational cost.
Abstract: We present a systematic theoretical study on the dissociation of diatomic molecules and their spectroscopic constants using our recently presented geminal-based wave function ansatze. Specifically, the performance of the antisymmetric product of rank two geminals (APr2G), the antisymmetric product of 1-reference-orbital geminals (AP1roG) and its orbital-optimized variant (OO-AP1roG) are assessed against standard quantum chemistry methods. Our study indicates that these new geminal-based approaches provide a cheap, robust, and accurate alternative for the description of bond-breaking processes in closed-shell systems requiring only mean-field-like computational cost. In particular, the spectroscopic constants obtained from OO-AP1roG are in very good agreement with reference theoretical and experimental data.

88 citations


Cited by
More filters
01 Jan 2011

2,117 citations

Dissertation
01 Oct 1948
TL;DR: In this article, it was shown that a metal should be superconductive if a set of corners of a Brillouin zone is lying very near the Fermi surface, considered as a sphere, which limits the region in the momentum space completely filled with electrons.
Abstract: IN two previous notes1, Prof. Max Born and I have shown that one can obtain a theory of superconductivity by taking account of the fact that the interaction of the electrons with the ionic lattice is appreciable only near the boundaries of Brillouin zones, and particularly strong near the corners of these. This leads to the criterion that the metal should be superconductive if a set of corners of a Brillouin zone is lying very near the Fermi surface, considered as a sphere, which limits the region in the momentum space completely filled with electrons.

2,042 citations

01 Aug 1993
TL;DR: One-dimensional Bose-gas One-dimensional Heisenberg magnet Massive Thirring model Classical r-matrix Fundamentals of inverse scattering method Algebraic Bethe ansatz Quantum field theory integral models on a lattice Theory of scalar products Form factors Mean value of operator Q Assymptotics of correlation functions Temperature correlation functions Appendices References as discussed by the authors
Abstract: One-dimensional Bose-gas One-dimensional Heisenberg magnet Massive Thirring model Classical r-matrix Fundamentals of inverse scattering method Algebraic Bethe ansatz Quantum field theory integral models on a lattice Theory of scalar products Form factors Mean value of operator Q Assymptotics of correlation functions Temperature correlation functions Appendices References.

1,491 citations

Journal ArticleDOI
TL;DR: This study demonstrates that finely tuning the OPV materials to reduce the bandgap-voltage offset has great potential for boosting the efficiency and unexpectedly obtain higher open-circuit voltages and achieve a record high PCE of 16.5% by chlorination.
Abstract: Broadening the optical absorption of organic photovoltaic (OPV) materials by enhancing the intramolecular push-pull effect is a general and effective method to improve the power conversion efficiencies of OPV cells. However, in terms of the electron acceptors, the most common molecular design strategy of halogenation usually results in down-shifted molecular energy levels, thereby leading to decreased open-circuit voltages in the devices. Herein, we report a chlorinated non-fullerene acceptor, which exhibits an extended optical absorption and meanwhile displays a higher voltage than its fluorinated counterpart in the devices. This unexpected phenomenon can be ascribed to the reduced non-radiative energy loss (0.206 eV). Due to the simultaneously improved short-circuit current density and open-circuit voltage, a high efficiency of 16.5% is achieved. This study demonstrates that finely tuning the OPV materials to reduce the bandgap-voltage offset has great potential for boosting the efficiency. Halogenation has proved an effective strategy to improve the power conversion efficiencies of organic solar cells but it usually leads to lower open-circuit voltages. Here, Cui et al. unexpectedly obtain higher open-circuit voltages and achieve a record high PCE of 16.5% by chlorination.

1,360 citations