scispace - formally typeset
Search or ask a question
Author

Paul A. Rosen

Bio: Paul A. Rosen is an academic researcher from California Institute of Technology. The author has contributed to research in topics: Synthetic aperture radar & Radar. The author has an hindex of 45, co-authored 169 publications receiving 17153 citations. Previous affiliations of Paul A. Rosen include Stanford University & Jet Propulsion Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: The Shuttle Radar Topography Mission produced the most complete, highest-resolution digital elevation model of the Earth, using dual radar antennas to acquire interferometric radar data, processed to digital topographic data at 1 arc sec resolution.
Abstract: [1] The Shuttle Radar Topography Mission produced the most complete, highest-resolution digital elevation model of the Earth. The project was a joint endeavor of NASA, the National Geospatial-Intelligence Agency, and the German and Italian Space Agencies and flew in February 2000. It used dual radar antennas to acquire interferometric radar data, processed to digital topographic data at 1 arc sec resolution. Details of the development, flight operations, data processing, and products are provided for users of this revolutionary data set.

5,019 citations

Journal ArticleDOI
01 Mar 2000
TL;DR: In this paper, the authors present a review of the techniques of interferometry, systems and limitations, and applications in a rapidly growing area of science and engineering, including cartography, geodesy, land cover characterization, and natural hazards.
Abstract: Synthetic aperture radar interferometry is an imaging technique for measuring the topography of a surface, its changes over time, and other changes in the detailed characteristic of the surface. By exploiting the phase of the coherent radar signal, interferometry has transformed radar remote sensing from a largely interpretive science to a quantitative tool, with applications in cartography, geodesy, land cover characterization, and natural hazards. This paper reviews the techniques of interferometry, systems and limitations, and applications in a rapidly growing area of science and engineering.

3,042 citations

Journal ArticleDOI
TL;DR: In this article, the authors used the longest radar wavelengths possible, within ionospheric scintillation and Faraday rotation limits, for topography, maximize interferometer baseline within decorrelation limits, and use multiple observations and average the derived products.
Abstract: Interferogram images derived from repeat-pass spaceborne synthetic aperture radar systems exhibit artifacts due to the time and space variations of atmospheric water vapor Other tropospheric variations, such as pressure and temperature, also induce distortions, but the effects are smaller in magnitude and more evenly distributed throughout the interferogram than the wet troposphere term Spatial and temporal changes of 20% in relative humidity lead to 10 cm errors in deformation products, and perhaps 100 m of error in derived topographic maps for those pass pairs with unfavorable baseline geometries In wet regions such as Hawaii, these are by far the dominant errors in the Spaceborne Imaging Radar-C and X Band Synthetic Aperature Radar (SIR-C/X-SAR) interferometric products The unknown time delay from tropospheric distortion is independent of frequency, and thus multiwavelength measurements, such as those commonly used to correct radar altimeter and Global Positioning System (GPS) ionospheric biases, cannot be used to rectify the error In the topographic case, the errors may be mitigated by choosing interferometric pairs with relatively long baselines, as the error amplitude is inversely proportional to the perpendicular component of the interferometer baseline For the SIR-C/X-SAR Hawaii data we found that the best (longest) baseline pair produced a map supporting 100 m contouring, whereas the poorest baseline choice yielded an extremely noisy topographic map even at this coarse contour interval In the case of deformation map errors the result is either independent of baseline parameters or else very nearly so Here the only solution is averaging of independent interferograms, so in order to create accurate deformation products in wet regions many multiple passes may be required Rules for designing optimal data acquisition and processing sequences for interferometric analyses in nondesert parts of the world are (1) to use the longest radar wavelengths possible, within ionospheric scintillation and Faraday rotation limits, (2) for topography, maximize interferometer baseline within decorrelation limits* and (3) for surface deformation, use multiple observations and average the derived products Following the above recipe yields accuracies of 10 m for digital elevation models and 1 cm for deformation maps even in very wet regions, such as Hawaii

921 citations

Journal ArticleDOI
TL;DR: Synthetic aperture radar interferometry (InSAR) from Earth-orbiting spacecraft provides a new tool to map global topography and deformation of the Earth's surface.
Abstract: Synthetic aperture radar interferometry (InSAR) from Earth-orbiting spacecraft provides a new tool to map global topography and deformation of the Earth's surface. Radar images taken from slightly different viewing directions allow the construction of digital elevation models of meter-scale accuracy. These data sets aid in the analysis and interpretation of tectonic and volcanic landscapes. If the Earth's surface deformed between two radar image acquisitions, a map of the surface dis- placement with tens-of-meters resolution and subcentimeter accuracy can be con- structed. This review gives a basic overview of InSAR for Earth scientists and presents a selection of geologic applications that demonstrate the unique capabilities of InSAR for mapping the topography and deformation of the Earth.

902 citations

Journal ArticleDOI
TL;DR: RO1_PAC as mentioned in this paper is a Repeat Orbit Interferometry package that allows topographic and surface change researchers to apply Interferometric Synthetic Aperture Radar (InSAR) methods.
Abstract: RO1_PAC V2.3, a Repeat Orbit Interferometry package that allows topographic and surface change researchers to apply Interferometric Synthetic Aperture Radar (InSAR) methods, is now freely available to the community InSAR is the synthesis of conventional SAR and interferometry techniques that have been developed over several decades in radio astronomy and radar remote sensing. In recent years, it has opened entirely new application areas for radar in the Earth system sciences, including topographic mapping and geodesy. RO1_PAC, developed primarily to work with European Remote Sensing (ERS) satellite radar data, currently supports ERS-1, ERS-2, and Japanese Earth Resources Satellite (JERS) radar data, and is configurable to work with “strip-mode” data from all existing satellite radar instruments. The first release of RO1_ PAC (V1.0) was made quietly in 2000, and roughly 30 groups in the academic and research community currently use it.

623 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors created a new dataset of spatially interpolated monthly climate data for global land areas at a very high spatial resolution (approximately 1 km2), including monthly temperature (minimum, maximum and average), precipitation, solar radiation, vapour pressure and wind speed, aggregated across a target temporal range of 1970-2000, using data from between 9000 and 60,000 weather stations.
Abstract: We created a new dataset of spatially interpolated monthly climate data for global land areas at a very high spatial resolution (approximately 1 km2). We included monthly temperature (minimum, maximum and average), precipitation, solar radiation, vapour pressure and wind speed, aggregated across a target temporal range of 1970–2000, using data from between 9000 and 60 000 weather stations. Weather station data were interpolated using thin-plate splines with covariates including elevation, distance to the coast and three satellite-derived covariates: maximum and minimum land surface temperature as well as cloud cover, obtained with the MODIS satellite platform. Interpolation was done for 23 regions of varying size depending on station density. Satellite data improved prediction accuracy for temperature variables 5–15% (0.07–0.17 °C), particularly for areas with a low station density, although prediction error remained high in such regions for all climate variables. Contributions of satellite covariates were mostly negligible for the other variables, although their importance varied by region. In contrast to the common approach to use a single model formulation for the entire world, we constructed the final product by selecting the best performing model for each region and variable. Global cross-validation correlations were ≥ 0.99 for temperature and humidity, 0.86 for precipitation and 0.76 for wind speed. The fact that most of our climate surface estimates were only marginally improved by use of satellite covariates highlights the importance having a dense, high-quality network of climate station data.

7,558 citations

Journal ArticleDOI
TL;DR: The Shuttle Radar Topography Mission produced the most complete, highest-resolution digital elevation model of the Earth, using dual radar antennas to acquire interferometric radar data, processed to digital topographic data at 1 arc sec resolution.
Abstract: [1] The Shuttle Radar Topography Mission produced the most complete, highest-resolution digital elevation model of the Earth. The project was a joint endeavor of NASA, the National Geospatial-Intelligence Agency, and the German and Italian Space Agencies and flew in February 2000. It used dual radar antennas to acquire interferometric radar data, processed to digital topographic data at 1 arc sec resolution. Details of the development, flight operations, data processing, and products are provided for users of this revolutionary data set.

5,019 citations

Journal ArticleDOI
TL;DR: The authors present a complete procedure for the identification and exploitation of stable natural reflectors or permanent scatterers (PSs) starting from long temporal series of interferometric SAR images.
Abstract: Temporal and geometrical decorrelation often prevents SAR interferometry from being an operational tool for surface deformation monitoring and topographic profile reconstruction. Moreover, atmospheric disturbances can strongly compromise the accuracy of the results. The authors present a complete procedure for the identification and exploitation of stable natural reflectors or permanent scatterers (PSs) starting from long temporal series of interferometric SAR images. When, as it often happens, the dimension of the PS is smaller than the resolution cell, the coherence is good even for interferograms with baselines larger than the decorrelation one, and all the available images of the ESA ERS data set can be successfully exploited. On these pixels, submeter DEM accuracy and millimetric terrain motion detection can be achieved, since atmospheric phase screen (APS) contributions can be estimated and removed. Examples are then shown of small motion measurements, DEM refinement, and APS estimation and removal in the case of a sliding area in Ancona, Italy. ERS data have been used.

3,963 citations

Journal ArticleDOI
TL;DR: Results obtained on the data acquired from 1992 to 2000 by the European Remote Sensing satellites and relative to the Campi Flegrei caldera and to the city of Naples, Italy, that demonstrate the capability of the proposed approach to follow the dynamics of the detected deformations.
Abstract: We present a new differential synthetic aperture radar (SAR) interferometry algorithm for monitoring the temporal evolution of surface deformations. The presented technique is based on an appropriate combination of differential interferograms produced by data pairs characterized by a small orbital separation (baseline) in order to limit the spatial decorrelation phenomena. The application of the singular value decomposition method allows us to easily "link" independent SAR acquisition datasets, separated by large baselines, thus increasing the observation temporal sampling rate. The availability of both spatial and temporal information in the processed data is used to identify and filter out atmospheric phase artifacts. We present results obtained on the data acquired from 1992 to 2000 by the European Remote Sensing satellites and relative to the Campi Flegrei caldera and to the city of Naples, Italy, that demonstrate the capability of the proposed approach to follow the dynamics of the detected deformations.

3,522 citations

01 Oct 2000
TL;DR: The most complete digital topographic map of Earth was made by the Shuttle Radar Topography Mission (SRTM) as discussed by the authors, which used a single-pass radar interferometer to produce a digital elevation model (DEM) of the Earth's land surface between about 60 deg north and 56 deg south latitude.
Abstract: On February 22, 2000 Space Shuttle Endeavour landed at Kennedy Space Center, completing the highly successful 11-day flight of the Shuttle Radar Topography Mission (SRTM). Onboard were over 300 high-density tapes containing data for the highest resolution, most complete digital topographic map of Earth ever made. SRTM is a cooperative project between NASA and the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense. The mission was designed to use a single-pass radar interferometer to produce a digital elevation model (DEM) of the Earth's land surface between about 60 deg north and 56 deg south latitude. When completed, the DEM will have 30 m pixel spacing and about 15 m vertical accuracy. Two orthorectified image mosaics (one from the ascending passes with illumination from the southeast and one from descending passes with illumination from the southwest) will also be produced.

3,137 citations