scispace - formally typeset
Search or ask a question
Author

Paul B. Reid

Bio: Paul B. Reid is an academic researcher from Harvard University. The author has contributed to research in topics: Telescope & X-ray telescope. The author has an hindex of 15, co-authored 64 publications receiving 1531 citations. Previous affiliations of Paul B. Reid include University of Alabama in Huntsville & Smithsonian Astrophysical Observatory.


Papers
More filters
Journal ArticleDOI
TL;DR: The X-ray Telescope (XRT) of the Hinode mission as mentioned in this paper provides an unprecedented combination of spatial and temporal resolution in solar coronal studies, and the high sensitivity and broad dynamic range of XRT, coupled with the spacecraft's onboard memory capacity and the planned downlink capability, will permit a broad range of solar studies over an extended period of time for targets ranging from quiet Sun to X-flares.
Abstract: The X-ray Telescope (XRT) of the Hinode mission provides an unprecedented combination of spatial and temporal resolution in solar coronal studies. The high sensitivity and broad dynamic range of XRT, coupled with the spacecraft’s onboard memory capacity and the planned downlink capability will permit a broad range of coronal studies over an extended period of time, for targets ranging from quiet Sun to X-flares. This paper discusses in detail the design, calibration, and measured performance of the XRT instrument up to the focal plane. The CCD camera and data handling are discussed separately in a companion paper.

763 citations

Journal ArticleDOI
TL;DR: The Lynx architecture enables a broad range of unique and compelling science to be carried out mainly through a General Observer Program, envisioned to include detecting the very first seed black holes, revealing the high-energy drivers of galaxy formation and evolution, and characterizing the mechanisms that govern stellar evolution and stellar ecosystems.
Abstract: Lynx, one of the four strategic mission concepts under study for the 2020 Astrophysics Decadal Survey, provides leaps in capability over previous and planned x-ray missions and provides synergistic observations in the 2030s to a multitude of space- and ground-based observatories across all wavelengths. Lynx provides orders of magnitude improvement in sensitivity, on-axis subarcsecond imaging with arcsecond angular resolution over a large field of view, and high-resolution spectroscopy for point-like and extended sources in the 0.2- to 10-keV range. The Lynx architecture enables a broad range of unique and compelling science to be carried out mainly through a General Observer Program. This program is envisioned to include detecting the very first seed black holes, revealing the high-energy drivers of galaxy formation and evolution, and characterizing the mechanisms that govern stellar evolution and stellar ecosystems. The Lynx optics and science instruments are carefully designed to optimize the science capability and, when combined, form an exciting architecture that utilizes relatively mature technologies for a cost that is compatible with the projected NASA Astrophysics budget.

139 citations

Proceedings ArticleDOI
11 Jul 1997
TL;DR: The AXAF high resolution mirror assembly (HRMA) is complete and has been tested at the NASA Marshall Space Flight Center (MSFC) X-ray Calibration Facility (XRCF) as mentioned in this paper.
Abstract: The AXAF (Advanced X-ray Astrophysics Facility) high resolution mirror assembly (HRMA) now is complete and has been tested at the NASA Marshall Space Flight Center (MSFC) X-ray Calibration Facility (XRCF). The surface and alignment properties of the mirror were thoroughly measured before the x-ray test, which allowed accurate performance predictions to be performed. The preliminary analysis of the measured x-ray image distributions for all energies tested show excellent agreement with predictions made before the beginning of the test. There is a discrepancy between the measured and predicted effective areas; this typically is less than 5%, and is less than 13% for all energies measured. We present evidence that this discrepancy is due to uncertainties in the calibration of the test instrumentation, and therefore can be expected to be reduced when results from further instrument calibration tests now in progress are incorporated into the analysis. We predict that 65 - 80% (depending upon energy) of the flux from an imaged point source will be contained on a one arc second diameter aperture in flight. We expect the HRMA to more than fulfill the requirements necessary to achieve the AXAF scientific objectives.© (1997) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

101 citations

Proceedings ArticleDOI
TL;DR: The X-ray Surveyor (X-S) as discussed by the authors is a large-scale mission with a high-resolution mirror assembly and an instrument set, which may include an x-ray microcalorimeter, a highdefinition imager, and a dispersive grating spectrometer and its readout.
Abstract: NASA's Chandra X-ray Observatory continues to provide an unparalleled means for exploring the high-energy universe. With its half-arcsecond angular resolution, Chandra studies have deepened our understanding of galaxy clusters, active galactic nuclei, galaxies, supernova remnants, neutron stars, black holes, and solar system objects. As we look beyond Chandra, it is clear that comparable or even better angular resolution with greatly increased photon throughput is essential to address ever more demanding science questions—such as the formation and growth of black hole seeds at very high redshifts; the emergence of the first galaxy groups; and details of feedback over a large range of scales from galaxies to galaxy clusters. Recently, we initiated a concept study for such a mission, dubbed X-ray Surveyor. The X-ray Surveyor strawman payload is comprised of a high-resolution mirror assembly and an instrument set, which may include an X-ray microcalorimeter, a high-definition imager, and a dispersive grating spectrometer and its readout. The mirror assembly will consist of highly nested, thin, grazing-incidence mirrors, for which a number of technical approaches are currently under development—including adjustable X-ray optics, differential deposition, and new polishing techniques applied to a variety of substrates. This study benefits from previous studies of large missions carried out over the past two decades and, in most areas, points to mission requirements no more stringent than those of Chandra.

76 citations

Journal ArticleDOI
TL;DR: Good agreement between the results suggests that actuation of PZT thin films can control mirror figure errors to a precision of about 5 nm, allowing sub-arcsecond imaging.
Abstract: Piezoelectric PbZr(0.52)Ti(0.48)O(3) (PZT) thin films deposited on thin glass substrates have been proposed for adjustable optics in future x-ray telescopes. The light weight of these x-ray optics enables large collecting areas, while the capability to correct mirror figure errors with the PZT thin film will allow much higher imaging resolution than possible with conventional lightweight optics. However, the low strain temperature and flexible nature of the thin glass complicate the use of chemical-solution deposition due to warping of the substrate at typical crystallization temperatures for the PZT. RF magnetron sputtering enabled preparation of PZT films with thicknesses up to 3 μm on Schott D263 glass substrates with much less deformation. X-ray diffraction analysis indicated that the films crystallized with the perovskite phase and showed no indication of secondary phases. Films with 1 cm(2) electrodes exhibited relative permittivity values near 1100 and loss tangents below 0.05. In addition, the remanent polarization was 26 μC/cm(2) with coercive fields of 33 kV/cm. The transverse piezoelectric coefficient was as high as -6.1±0.6 C/m(2). To assess influence functions for the x-ray optics application, the piezoelectrically induced deflection of individual cells was measured and compared with finite-element-analysis calculations. The good agreement between the results suggests that actuation of PZT thin films can control mirror figure errors to a precision of about 5 nm, allowing sub-arcsecond imaging.

44 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Atmospheric Imaging Assembly (AIA) as discussed by the authors provides multiple simultaneous high-resolution full-disk images of the corona and transition region up to 0.5 R ⊙ above the solar limb with 1.5-arcsec spatial resolution and 12-second temporal resolution.
Abstract: The Atmospheric Imaging Assembly (AIA) provides multiple simultaneous high-resolution full-disk images of the corona and transition region up to 0.5 R ⊙ above the solar limb with 1.5-arcsec spatial resolution and 12-second temporal resolution. The AIA consists of four telescopes that employ normal-incidence, multilayer-coated optics to provide narrow-band imaging of seven extreme ultraviolet (EUV) band passes centered on specific lines: Fe xviii (94 A), Fe viii, xxi (131 A), Fe ix (171 A), Fe xii, xxiv (193 A), Fe xiv (211 A), He ii (304 A), and Fe xvi (335 A). One telescope observes C iv (near 1600 A) and the nearby continuum (1700 A) and has a filter that observes in the visible to enable coalignment with images from other telescopes. The temperature diagnostics of the EUV emissions cover the range from 6×104 K to 2×107 K. The AIA was launched as a part of NASA’s Solar Dynamics Observatory (SDO) mission on 11 February 2010. AIA will advance our understanding of the mechanisms of solar variability and of how the Sun’s energy is stored and released into the heliosphere and geospace.

4,321 citations

Journal ArticleDOI
TL;DR: The solar optical telescope (SOT) as discussed by the authors is a 50-cm diffraction-limited Gregorian telescope with the Stokes Spectro-Polarimeter (SP) attached to it.
Abstract: The Solar Optical Telescope (SOT) aboard the Hinode satellite (formerly called Solar-B) consists of the Optical Telescope Assembly (OTA) and the Focal Plane Package (FPP). The OTA is a 50-cm diffraction-limited Gregorian telescope, and the FPP includes the narrowband filtergraph (NFI) and the broadband filtergraph (BFI), plus the Stokes Spectro-Polarimeter (SP). The SOT provides unprecedented high-resolution photometric and vector magnetic images of the photosphere and chromosphere with a very stable point spread function and is equipped with an image-stabilization system with performance better than 0.01 arcsec rms. Together with the other two instruments on Hinode (the X-Ray Telescope (XRT) and the EUV Imaging Spectrometer (EIS)), the SOT is poised to address many fundamental questions about solar magnetohydrodynamics. This paper provides an overview; the details of the instrument are presented in a series of companion papers.

1,448 citations

Journal ArticleDOI
TL;DR: An overview of solar flares and associated phenomena, drawing upon a wide range of observational data primarily from the RHESSI era, is presented in this paper, where the focus is on different areas of flare phenomena (footpoints and ribbons, coronal sources, relationship to coronal mass ejections) and their interconnections.
Abstract: We present an overview of solar flares and associated phenomena, drawing upon a wide range of observational data primarily from the RHESSI era Following an introductory discussion and overview of the status of observational capabilities, the article is split into topical sections which deal with different areas of flare phenomena (footpoints and ribbons, coronal sources, relationship to coronal mass ejections) and their interconnections We also discuss flare soft X-ray spectroscopy and the energetics of the process The emphasis is to describe the observations from multiple points of view, while bearing in mind the models that link them to each other and to theory The present theoretical and observational understanding of solar flares is far from complete, so we conclude with a brief discussion of models, and a list of missing but important observations

774 citations

Journal ArticleDOI
TL;DR: In this article, a zero-β magnetohydrodynamic (MHD) simulation of an initially potential, asymmetric bipolar field, which evolves by means of simultaneous slow magnetic field diffusion and sub-Alfvenic, line-tied shearing motions in the photosphere, is used to analyze the physical mechanisms that form a three-dimensional coronal flux rope and later cause its eruption.
Abstract: We analyze the physical mechanisms that form a three-dimensional coronal flux rope and later cause its eruption. This is achieved by a zero-β magnetohydrodynamic (MHD) simulation of an initially potential, asymmetric bipolar field, which evolves by means of simultaneous slow magnetic field diffusion and sub-Alfvenic, line-tied shearing motions in the photosphere. As in similar models, flux-cancellation-driven photospheric reconnection in a bald-patch (BP) separatrix transforms the sheared arcades into a slowly rising and stable flux rope. A bifurcation from a BP to a quasi-separatrix layer (QSL) topology occurs later on in the evolution, while the flux rope keeps growing and slowly rising, now due to shear-driven coronal slip-running reconnection, which is of tether-cutting type and takes place in the QSL. As the flux rope reaches the altitude at which the decay index –∂ln B/∂ln z of the potential field exceeds ~3/2, it rapidly accelerates upward, while the overlying arcade eventually develops an inverse tear-drop shape, as observed in coronal mass ejections (CMEs). This transition to eruption is in accordance with the onset criterion of the torus instability. Thus, we find that photospheric flux-cancellation and tether-cutting coronal reconnection do not trigger CMEs in bipolar magnetic fields, but are key pre-eruptive mechanisms for flux ropes to build up and to rise to the critical height above the photosphere at which the torus instability causes the eruption. In order to interpret recent Hinode X-Ray Telescope observations of an erupting sigmoid, we produce simplified synthetic soft X-ray images from the distribution of the electric currents in the simulation. We find that a bright sigmoidal envelope is formed by pairs of -shaped field lines in the pre-eruptive stage. These field lines form through the BP reconnection and merge later on into -shaped loops through the tether-cutting reconnection. During the eruption, the central part of the sigmoid brightens due to the formation of a vertical current layer in the wake of the erupting flux rope. Slip-running reconnection in this layer yields the formation of flare loops. A rapid decrease of currents due to field line expansion, together with the increase of narrow currents in the reconnecting QSL, yields the sigmoid hooks to thin in the early stages of the eruption. Finally, a slightly rotating erupting loop-like feature (ELLF) detaches from the center of the sigmoid. Most of this ELLF is not associated with the erupting flux rope, but with a current shell that develops within expanding field lines above the rope. Only the short, curved end of the ELLF corresponds to a part of the flux rope. We argue that the features found in the simulation are generic for the formation and eruption of soft X-ray sigmoids.

618 citations

Journal ArticleDOI
TL;DR: The Chandra COSMOS Survey (C-COSMS) is a large, 1.8Ms, Chandra program that has imaged the central 0.5 deg^2 area with an effective exposure of ~160 ks as discussed by the authors.
Abstract: The Chandra COSMOS Survey (C-COSMOS) is a large, 1.8 Ms, Chandra program that has imaged the central 0.5 deg^2 of the COSMOS field (centered at 10 ^h , +02 ^o ) with an effective exposure of ~160 ks, and an outer 0.4 deg^2 area with an effective exposure of ~80 ks. The limiting source detection depths are 1.9 × 10^(–16) erg cm^(–2) s^(–1) in the soft (0.5-2 keV) band, 7.3 × 10^(–16) erg cm^(–2) s^(–1) in the hard (2-10 keV) band, and 5.7 × 10^(–16) erg cm^(–2) s^(–1) in the full (0.5-10 keV) band. Here we describe the strategy, design, and execution of the C-COSMOS survey, and present the catalog of 1761 point sources detected at a probability of being spurious of <2 × 10^(–5) (1655 in the full, 1340 in the soft, and 1017 in the hard bands). By using a grid of 36 heavily (~50%) overlapping pointing positions with the ACIS-I imager, a remarkably uniform (±12%) exposure across the inner 0.5 deg^2 field was obtained, leading to a sharply defined lower flux limit. The widely different point-spread functions obtained in each exposure at each point in the field required a novel source detection method, because of the overlapping tiling strategy, which is described in a companion paper. This method produced reliable sources down to a 7-12 counts, as verified by the resulting logN-logS curve, with subarcsecond positions, enabling optical and infrared identifications of virtually all sources, as reported in a second companion paper. The full catalog is described here in detail and is available online.

508 citations