scispace - formally typeset
Search or ask a question
Author

Paul Bailey

Other affiliations: Norwich University, University of Bristol, Norwich Research Park  ...read more
Bio: Paul Bailey is an academic researcher from Royal Botanic Gardens. The author has contributed to research in topics: Gene & Gene family. The author has an hindex of 22, co-authored 35 publications receiving 4906 citations. Previous affiliations of Paul Bailey include Norwich University & University of Bristol.

Papers
More filters
Journal ArticleDOI
TL;DR: Based on the current characterization of a limited number of plant bHLH proteins, it is predicted that this family of TFs has a range of different roles in plant cell and tissue development as well as plant metabolism.
Abstract: Basic helix-loop-helix (bHLH) transcription factors (TFs) belong to a family of transcriptional regulators present in three eukaryotic kingdoms. Many different functions have been identified for these proteins in animals, including the control of cell proliferation and development of specific cell lineages. Their mechanism for controlling gene transcription often involves homodimerization or heterodimerization. In plants, little is known about the bHLH family, but we have determined that there are 133 bHLH genes in Arabidopsis thaliana and have confirmed that at least 113 of them are expressed. The AtbHLH genes constitute one of the largest families of transcription factors in A. thaliana with significantly more members than are found in most animal species and about an equivalent number to those in vertebrates. Comparisons with animal sequences suggest that the majority of plant bHLH genes have evolved from the ancestral group B class of bHLH genes. By studying the AtbHLH genes collectively, twelve subfamilies have been identified. Within each of these main groups, there are conserved amino acid sequence motifs outside the DNA binding domain. Potential gene redundancy among members of smaller subgroups has been analyzed, and the resulting information is presented to provide a simplified visual interpretation of the gene family, identifying related genes that are likely to share similar functions. Based on the current characterization of a limited number of plant bHLH proteins, we predict that this family of TFs has a range of different roles in plant cell and tissue development as well as plant metabolism.

875 citations

Journal ArticleDOI
TL;DR: An Arabidopsis thaliana line that is mutant for the R2R3 MYB gene, AtMYB4, shows enhanced levels of sinapate esters in its leaves, indicating that derepression is an important mechanism for acclimation to UV‐B in A.thaliana.
Abstract: An Arabidopsis thaliana line that is mutant for the R2R3 MYB gene, AtMYB4, shows enhanced levels of sinapate esters in its leaves. The mutant line is more tolerant of UV-B irradiation than wild type. The increase in sinapate ester accumulation in the mutant is associated with an enhanced expression of the gene encoding cinnamate 4-hydroxylase, which appears to be the principal target of AtMYB4 and an effective rate limiting step in the synthesis of sinapate ester sunscreens. AtMYB4 expression is downregulated by exposure to UV-B light, indicating that derepression is an important mechanism for acclimation to UV-B in A.thaliana. The response of target genes to AtMYB4 repression is dose dependent, a feature that operates under physiological conditions to reinforce the silencing effect of AtMYB4 at high activity. AtMYB4 works as a repressor of target gene expression and includes a repression domain. It belongs to a novel group of plant R2R3 MYB proteins involved in transcriptional silencing. The balance between MYB activators and repressors on common target promoters may provide extra flexibility in transcriptional control.

794 citations

Journal ArticleDOI
TL;DR: It is shown that Sicilian blood orange arose by insertion of a Copia-like retrotransposon adjacent to a gene encoding Ruby, a MYB transcriptional activator of anthocyanin production, and transposition and recombination of retroelements are likely important sources of variation in Citrus.
Abstract: Traditionally, Sicilian blood oranges (Citrus sinensis) have been associated with cardiovascular health, and consumption has been shown to prevent obesity in mice fed a high-fat diet. Despite increasing consumer interest in these health-promoting attributes, production of blood oranges remains unreliable due largely to a dependency on cold for full color formation. We show that Sicilian blood orange arose by insertion of a Copia-like retrotransposon adjacent to a gene encoding Ruby, a MYB transcriptional activator of anthocyanin production. The retrotransposon controls Ruby expression, and cold dependency reflects the induction of the retroelement by stress. A blood orange of Chinese origin results from an independent insertion of a similar retrotransposon, and color formation in its fruit is also cold dependent. Our results suggest that transposition and recombination of retroelements are likely important sources of variation in Citrus.

538 citations

Journal ArticleDOI
TL;DR: Analysis of mutant phenotypes shows that the Rosea1, Rosea2, and Venosa genes encode MYB-related transcription factors active in the flowers of Antirrhinum majus, which are probably a primary cause of natural variation in anthocyanin pigmentation in plants.
Abstract: The Rosea1, Rosea2, and Venosa genes encode MYB-related transcription factors active in the flowers of Antirrhinum majus. Analysis of mutant phenotypes shows that these genes control the intensity and pattern of magenta anthocyanin pigmentation in flowers. Despite the structural similarity of these regulatory proteins, they influence the expression of target genes encoding the enzymes of anthocyanin biosynthesis with different specificities. Consequently, they are not equivalent biochemically in their activities. Different species of the genus Antirrhinum, native to Spain and Portugal, show striking differences in their patterns and intensities of floral pigmentation. Differences in anthocyanin pigmentation between at least six species are attributable to variations in the activity of the Rosea and Venosa loci. Set in the context of our understanding of the regulation of anthocyanin production in other genera, the activity of MYB-related genes is probably a primary cause of natural variation in anthocyanin pigmentation in plants.

500 citations

Journal ArticleDOI
TL;DR: The protein coding regions of 2,735 mutant lines of tetraploid and hexaploid wheat were sequenced and a public database including more than 10 million mutations was developed, enabling rapid identification of mutations in the different copies of the wheat genes.
Abstract: Comprehensive reverse genetic resources, which have been key to understanding gene function in diploid model organisms, are missing in many polyploid crops. Young polyploid species such as wheat, which was domesticated less than 10,000 y ago, have high levels of sequence identity among subgenomes that mask the effects of recessive alleles. Such redundancy reduces the probability of selection of favorable mutations during natural or human selection, but also allows wheat to tolerate high densities of induced mutations. Here we exploited this property to sequence and catalog more than 10 million mutations in the protein-coding regions of 2,735 mutant lines of tetraploid and hexaploid wheat. We detected, on average, 2,705 and 5,351 mutations per tetraploid and hexaploid line, respectively, which resulted in 35-40 mutations per kb in each population. With these mutation densities, we identified an average of 23-24 missense and truncation alleles per gene, with at least one truncation or deleterious missense mutation in more than 90% of the captured wheat genes per population. This public collection of mutant seed stocks and sequence data enables rapid identification of mutations in the different copies of the wheat genes, which can be combined to uncover previously hidden variation. Polyploidy is a central phenomenon in plant evolution, and many crop species have undergone recent genome duplication events. Therefore, the general strategy and methods developed herein can benefit other polyploid crops.

421 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The elucidation ofMYB protein function and regulation that is possible in Arabidopsis will provide the foundation for predicting the contributions of MYB proteins to the biology of plants in general.

3,542 citations

Journal ArticleDOI
TL;DR: The MCScanX toolkit implements an adjusted MCScan algorithm for detection of synteny and collinearity that extends the original software by incorporating 14 utility programs for visualization of results and additional downstream analyses.
Abstract: MCScan is an algorithm able to scan multiple genomes or subgenomes in order to identify putative homologous chromosomal regions, and align these regions using genes as anchors. The MCScanX toolkit implements an adjusted MCScan algorithm for detection of synteny and collinearity that extends the original software by incorporating 14 utility programs for visualization of results and additional downstream analyses. Applications of MCScanX to several sequenced plant genomes and gene families are shown as examples. MCScanX can be used to effectively analyze chromosome structural changes, and reveal the history of gene family expansions that might contribute to the adaptation of lineages and taxa. An integrated view of various modes of gene duplication can supplement the traditional gene tree analysis in specific families. The source code and documentation of MCScanX are freely available at http://chibba.pgml.uga.edu/mcscan2/.

3,388 citations

Journal ArticleDOI
Rudi Appels1, Rudi Appels2, Kellye Eversole, Nils Stein3  +204 moreInstitutions (45)
17 Aug 2018-Science
TL;DR: This annotated reference sequence of wheat is a resource that can now drive disruptive innovation in wheat improvement, as this community resource establishes the foundation for accelerating wheat research and application through improved understanding of wheat biology and genomics-assisted breeding.
Abstract: An annotated reference sequence representing the hexaploid bread wheat genome in 21 pseudomolecules has been analyzed to identify the distribution and genomic context of coding and noncoding elements across the A, B, and D subgenomes. With an estimated coverage of 94% of the genome and containing 107,891 high-confidence gene models, this assembly enabled the discovery of tissue- and developmental stage-related coexpression networks by providing a transcriptome atlas representing major stages of wheat development. Dynamics of complex gene families involved in environmental adaptation and end-use quality were revealed at subgenome resolution and contextualized to known agronomic single-gene or quantitative trait loci. This community resource establishes the foundation for accelerating wheat research and application through improved understanding of wheat biology and genomics-assisted breeding.

2,118 citations

Journal ArticleDOI
TL;DR: Abscisic acid regulates many agronomically important aspects of plant development, including the synthesis of seed storage proteins and lipids, the promotion of seed desiccation tolerance and dormancy, and the inhibition of the phase transitions from embryonic to germinative growth and from.
Abstract: Abscisic acid (ABA) regulates many agronomically important aspects of plant development, including the synthesis of seed storage proteins and lipids, the promotion of seed desiccation tolerance and dormancy, and the inhibition of the phase transitions from embryonic to germinative growth and from

2,039 citations

Journal ArticleDOI
TL;DR: Lignin is the generic term for a large group of aromatic polymers resulting from the oxidative combinatorial coupling of 4-hydroxyphenylpropanoids, deposited predominantly in the walls of secondarily thickened cells, making them lignin-like polymers.
Abstract: Lignin is the generic term for a large group of aromatic polymers resulting from the oxidative combinatorial coupling of 4-hydroxyphenylpropanoids ([Boerjan et al., 2003][1]; [Ralph et al., 2004][2]). These polymers are deposited predominantly in the walls of secondarily thickened cells, making them

1,956 citations