scispace - formally typeset
Search or ask a question
Author

Paul Brincat

Bio: Paul Brincat is an academic researcher from Autodesk. The author has contributed to research in topics: Injection moulding. The author has an hindex of 2, co-authored 2 publications receiving 91 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the performance of injection molding (IM) tools with conformal cooling channels has been evaluated using numerical modeling software originally developed for conventionally cooled mould designs, with a focus on material properties of tool steels.
Abstract: Additive manufacturing (AM) techniques such as selective laser melting (SLM) can enable the construction of injection moulding (IM) tools with conformal cooling channels that significantly improve performance through higher cooling uniformity and reduced cycle times. Design of IM cooling systems is typically achieved using commercial IM numerical modelling software originally developed for conventionally cooled mould designs. However, the accuracy of IM modelling software in predicting the performance of SLM manufactured tools with conformal cooling, across a range of moulding materials and processing conditions, has not been thoroughly evaluated in the literature. Furthermore, the SLM manufacturability and mechanical properties of tool steels typically applied in IM, such as AISI H13, are not well documented. This work addresses these deficiencies through the following: quantification of SLM H13 material properties, in particular fatigue strength which has not been previously reported; design and manufacture of a mould tool with easily exchangeable conventionally and conformally cooled inserts; and subsequent experimental validation of IM simulation software predictions under a range conditions. Result of mechanical testing showed SLM H13 parts to offer lower mechanical properties in the as-built condition compared to conventional materials; however, these increased substantially following residual stress reduction with heat treatment. Evaluation of the temperature prediction accuracy of IM numerical models showed generally high accuracy for conformally cooled SLM tools, although marginally lower when compared to conventionally cooled moulds. The outcomes of this work offer designers typical material property data for SLM manufactured H13 tooling, as well as an indication of the expected prediction accuracy of current commercial IM simulation software when applied to conformally cooled SLM tooling.

135 citations

Patent
04 Mar 2013
TL;DR: In this article, an injection of each of a plurality of thermoplastic materials in a first modeled mold cavity is simulated, and a respective value of a first expected energy parameter is determined for each of the plurality of materials based on the simulated injections.
Abstract: Methods, systems, and apparatus, including computer program products, for determining energy indicator values for a plurality of thermoplastic materials. An energy indicator value represents expected energy requirements for performing an injection of the material in a mold cavity. An injection of each of a plurality of thermoplastic materials in a first modeled mold cavity is simulated. A respective value of a first expected energy parameter is determined for each of the plurality of thermoplastic materials based on the simulated injections. A respective energy indicator is determined, for each of the plurality of thermoplastic materials, based at least on the corresponding value of the first expected energy parameter. The respective energy indicator value of one or more of the plurality of thermoplastic materials is presented.

12 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, an overview of the different kinds of steels in use in fusion-based AM processes and present their microstructures, their mechanical and corrosion properties, their heat treatments and their intended applications.
Abstract: Today, a large number of different steels are being processed by Additive Manufacturing (AM) methods. The different matrix microstructure components and phases (austenite, ferrite, martensite) and the various precipitation phases (intermetallic precipitates, carbides) lend a huge variability in microstructure and properties to this class of alloys. This is true for AM-produced steels just as it is for conventionally-produced steels. However, steels are subjected during AM processing to time-temperature profiles which are very different from the ones encountered in conventional process routes, and hence the resulting microstructures differ strongly as well. This includes a very fine and highly morphologically and crystallographically textured microstructure as a result of high solidification rates as well as non-equilibrium phases in the as-processed state. Such a microstructure, in turn, necessitates additional or adapted post-AM heat treatments and alloy design adjustments. In this review, we give an overview over the different kinds of steels in use in fusion-based AM processes and present their microstructures, their mechanical and corrosion properties, their heat treatments and their intended applications. This includes austenitic, duplex, martensitic and precipitation-hardening stainless steels, TRIP/TWIP steels, maraging and carbon-bearing tool steels and ODS steels. We identify areas with missing information in the literature and assess which properties of AM steels exceed those of conventionally-produced ones, or, conversely, which properties fall behind. We close our review with a short summary of iron-base alloys with functional properties and their application perspectives in Additive Manufacturing.

467 citations

Journal ArticleDOI
TL;DR: In this article, different powder-based additive manufacturing processes deployed to ferrous alloys, their key process parameters, phase transformation and microstructure development during solidification, all of which impact on mechanical behavior.

393 citations

Journal ArticleDOI
TL;DR: A wide range of fundamental applications, specifically in aerospace components, automobile parts, wind turbines, micro‐/nano‐electromechanical systems, atomic force microscopes, and biomedical devices are highlighted.
Abstract: There has been tremendous interest in the development of different innovative wear-resistant materials, which can help to reduce energy losses resulted from friction and wear by ≈40% over the next 10-15 years. This paper provides a comprehensive review of the recent progress on designs, properties, and applications of wear-resistant materials, starting with an introduction of various advanced technologies for the fabrication of wear-resistant materials and anti-wear structures with their wear mechanisms. Typical strategies of surface engineering and matrix strengthening for the development of wear-resistant materials are then analyzed, focusing on the development of coatings, surface texturing, surface hardening, architecture, and the exploration of matrix compositions, microstructures, and reinforcements. Afterward, the relationship between the wear resistance of a material and its intrinsic properties including hardness, stiffness, strength, and cyclic plasticity is discussed with underlying mechanisms, such as the lattice distortion effect, bonding strength effect, grain size effect, precipitation effect, grain boundary effect, dislocation or twinning effect. A wide range of fundamental applications, specifically in aerospace components, automobile parts, wind turbines, micro-/nano-electromechanical systems, atomic force microscopes, and biomedical devices are highlighted. This review is concluded with prospects on challenges and future directions in this critical field.

140 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide a critical and in-depth evaluation of laser powder bed fusion (LPBF) and laser directed energy deposition (LDED) technologies of the mentioned aeroengine materials.
Abstract: Aerospace is a key market driver for the advancement of additive manufacturing (AM) due to the huge demands in high-mix low-volume production of high-value parts, integrated complex part geometries and simplified fabrication workflow. Rapid and significant progress has been made in the laser additive manufacturing (LAM) of aeroengine materials, including the advanced high-strength steels, nickel-based superalloys and titanium-based alloys. Despite the extensive investigation of these three families of materials by the research community, there is a lack of comprehensive review on LAM of high strength steels, and existing gaps in published reviews on Ti-based alloys and Ni-based superalloys. Furthermore, although emerging materials such as high/medium entropy alloys and heterostructured materials exhibit promising mechanical performance, rigorous characterization, testing, qualification, and certification are still required before actual application in engine parts. Thus, it is still important and relevant to have a deep understanding on the relationship between process parameters – microstructures – mechanical properties in these widely used aeroengine materials, to drive the development of superior high-value alloys. This review aims to provide a critical and in-depth evaluation of laser powder bed fusion (LPBF) and laser directed energy deposition (LDED) technologies of the mentioned aeroengine materials. The review will summarize the material properties, performance envelops and outlines the research gaps of these aeroengine materials. Furthermore, perspectives on research opportunities, materials development, and new R&D approaches of LAM for the aeroengine materials are also highlighted.

114 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe the studies carried out on the fatigue properties of diverse types of steel manufactured by selective laser melting, and review the parameters which are recognized to be effective on fatigue behavior of these steels.

113 citations