scispace - formally typeset
Search or ask a question
Author

Paul C. Anderson

Other affiliations: Merck & Co.
Bio: Paul C. Anderson is an academic researcher from Boehringer Ingelheim. The author has contributed to research in topics: HIV Protease Inhibitor & Protease. The author has an hindex of 17, co-authored 36 publications receiving 1567 citations. Previous affiliations of Paul C. Anderson include Merck & Co..

Papers
More filters
Journal ArticleDOI
13 Nov 2003-Nature
TL;DR: Administration of BILN 2061 to patients infected with HCV genotype 1 for 2 days resulted in an impressive reduction of HCV RNA plasma levels, and established proof-of-concept in humans for an HCV NS3 protease inhibitor, illustrating the potential of the viral-enzyme-targeted drug discovery approach for the development of new HCV therapeutics.
Abstract: Hepatitis C virus (HCV) infection is a serious cause of chronic liver disease worldwide with more than 170 million infected individuals at risk of developing significant morbidity and mortality. Current interferon-based therapies are suboptimal especially in patients infected with HCV genotype 1, and they are poorly tolerated, highlighting the unmet medical need for new therapeutics. The HCV-encoded NS3 protease is essential for viral replication and has long been considered an attractive target for therapeutic intervention in HCV-infected patients. Here we identify a class of specific and potent NS3 protease inhibitors and report the evaluation of BILN 2061, a small molecule inhibitor biologically available through oral ingestion and the first of its class in human trials. Administration of BILN 2061 to patients infected with HCV genotype 1 for 2 days resulted in an impressive reduction of HCV RNA plasma levels, and established proof-of-concept in humans for an HCV NS3 protease inhibitor. Our results further illustrate the potential of the viral-enzyme-targeted drug discovery approach for the development of new HCV therapeutics.

895 citations

Journal ArticleDOI
TL;DR: A highly convergent and stereoselective synthesis which is amenable to the preparation of multikilogram quantities ofPalinavir, a potent peptidomimetic-based HIV protease inhibitor, is developed.
Abstract: Palinavir is a potent peptidomimetic-based HIV protease inhibitor. We have developed a highly convergent and stereoselective synthesis which is amenable to the preparation of multikilogram quantities of this compound. The synthetic sequence proceeds in 24 distinct chemical steps (with several integrated, multistep operations) from commercially available starting materials. No chromatographies are required throughout the process, and the final product is purified by crystallization of its dihydrochloride salt to >99% homogeneity.

72 citations

Journal ArticleDOI
TL;DR: The results indicate that the antiviral activity of palinavir is specific to inhibition of the viral protease and occurs at a late stage in the replicative cycle of HIV-1.
Abstract: Palinavir is a potent inhibitor of the human immunodeficiency virus type 1 (HIV-1) and type 2 (HIV-2) proteases. Replication of laboratory strains (HIV-1, HIV-2, and simian immunodeficiency virus) and HIV-1 clinical isolates is inhibited by palinavir with 50% effective concentrations ranging from 0.5 to 30 nM. The average cytotoxic concentration of palinavir (35 microM) in the various target cells indicates a favorable therapeutic index. Potent antiviral activity is retained with increased doses of virus and with clinical isolates resistant to zidovudine (AZT), didanosine (ddI), or nevirapine. Combinations of palinavir with either AZT, ddI, or nevirapine demonstrate synergy or additivity in the inhibition of HIV-1 replication. Palinavir retains anti-HIV-1 activity when administered postinfection until times subsequent to the reverse transcription step. In chronically infected CR-10 cells, palinavir blocks Gag precursor polyprotein processing completely, reducing greater than 99% of infectious particle production. The results indicate that the antiviral activity of palinavir is specific to inhibition of the viral protease and occurs at a late stage in the replicative cycle of HIV-1. On the basis of the potent in vitro activity, low-level cytotoxicity, and other data, palinavir was selected for in-depth preclinical evaluation.

69 citations

Journal ArticleDOI
TL;DR: The crystal structure of HIV-2 protease in complex with a reduced amide inhibitor [BI-LA-398; Phe-Val-Phe-psi (CH2NH)-Leu-Glu-Ile-amide] has been determined and the shapes of the S1 and S2 pockets in the presence of this inhibitor are essentially unperturbed by the amino acid differences between HIV-1 and HIV- 2 proteases.
Abstract: The crystal structure of HIV-2 protease in complex with a reduced amide inhibitor [BI-LA-398; Phe-Val-Phe-psi (CH2NH)-Leu-Glu-Ile-amide] has been determined at 2.2-A resolution and refined to a crystallographic R factor of 17.6%. The rms deviation from ideality in bond lengths is 0.018 A and in bond angles is 2.8 degrees. The largest structural differences between HIV-1 and HIV-2 proteases are located at residues 15-20, 34-40, and 65-73, away from the flap region and the substrate binding sites. The rms distance between equivalent C alpha atoms of HIV-1 and HIV-2 protease structures excluding these residues is 0.5 A. The shapes of the S1 and S2 pockets in the presence of this inhibitor are essentially unperturbed by the amino acid differences between HIV-1 and HIV-2 proteases. The interaction of the inhibitor with HIV-2 protease is similar to that observed in HIV-1 protease structures. The unprotected N terminus of the inhibitor interacts with the side chains of Asp-29 and Asp-30. The glutamate side chain of the inhibitor forms hydrogen bonds with the main-chain amido groups of residues 129 and 130.

59 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: GOLD (Genetic Optimisation for Ligand Docking) is an automated ligand docking program that uses a genetic algorithm to explore the full range of ligand conformational flexibility with partial flexibility of the protein, and satisfies the fundamental requirement that the ligand must displace loosely bound water on binding.

5,882 citations

Journal ArticleDOI
20 Oct 2005-Nature
TL;DR: Cardif is described, a new CARD-containing adaptor protein that interacts with RIG-I and recruits IKKα, IKKβ and IKKɛ kinases by means of its C-terminal region, leading to the activation of NF-κB and IRF3.
Abstract: Antiviral immunity against a pathogen is mounted upon recognition by the host of virally associated structures. One of these viral 'signatures', double-stranded (ds) RNA, is a replication product of most viruses within infected cells and is sensed by Toll-like receptor 3 (TLR3) and the recently identified cytosolic RNA helicases RIG-I (retinoic acid inducible gene I, also known as Ddx58) and Mda5 (melanoma differentiation-associated gene 5, also known as Ifih1 or Helicard). Both helicases detect dsRNA, and through their protein-interacting CARD domains, relay an undefined signal resulting in the activation of the transcription factors interferon regulatory factor 3 (IRF3) and NF-kappaB. Here we describe Cardif, a new CARD-containing adaptor protein that interacts with RIG-I and recruits IKKalpha, IKKbeta and IKKvarepsilon kinases by means of its C-terminal region, leading to the activation of NF-kappaB and IRF3. Overexpression of Cardif results in interferon-beta and NF-kappaB promoter activation, and knockdown of Cardif by short interfering RNA inhibits RIG-I-dependent antiviral responses. Cardif is targeted and inactivated by NS3-4A, a serine protease from hepatitis C virus known to block interferon-beta production. Cardif thus functions as an adaptor, linking the cytoplasmic dsRNA receptor RIG-I to the initiation of antiviral programmes.

2,328 citations

Journal ArticleDOI
22 Jul 2005-Science
TL;DR: A full-length HCV genome that replicates and produces virus particles that are infectious in cell culture (HCVcc) is described, suggesting that this in vitro system will aid in the search for improved antiviral compounds.
Abstract: Many aspects of the hepatitis C virus (HCV) life cycle have not been reproduced in cell culture, which has slowed research progress on this important human pathogen. Here, we describe a full-length HCV genome that replicates and produces virus particles that are infectious in cell culture (HCVcc). Replication of HCVcc was robust, producing nearly 10(5) infectious units per milliliter within 48 hours. Virus particles were filterable and neutralized with a monoclonal antibody against the viral glycoprotein E2. Viral entry was dependent on cellular expression of a putative HCV receptor, CD81. HCVcc replication was inhibited by interferon-alpha and by several HCV-specific antiviral compounds, suggesting that this in vitro system will aid in the search for improved antivirals.

2,305 citations

Journal ArticleDOI
TL;DR: Current available monotherapies-interferon, lamivudine, and adefovir dipivoxil-very rarely eradicate the virus, but greatly reduce its replication, necroinflammatory histological activity, and progression of fibrosis.

1,813 citations

Journal ArticleDOI
TL;DR: The development of complete cell-culture systems should now enable the systematic dissection of the entire viral lifecycle, providing insights into the hitherto difficult-to-study early and late steps.
Abstract: Hepatitis C virus (HCV) afflicts more than 170 million people worldwide causing chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. The recent development of complete cell-culture systems for HCV has accelerated the pace of hepatitis research. Specifically, these techniques have provided new insights into the virus lifecycle that are reviewed here. This should pave the way for developing bespoke and effective antiviral therapies and vaccines. Exciting progress has recently been made in understanding the replication of hepatitis C virus, a major cause of chronic hepatitis, liver cirrhosis and hepatocellular carcinoma worldwide. The development of complete cell-culture systems should now enable the systematic dissection of the entire viral lifecycle, providing insights into the hitherto difficult-to-study early and late steps. These efforts have already translated into the identification of novel antiviral targets and the development of new therapeutic strategies, some of which are currently undergoing clinical evaluation.

1,286 citations