scispace - formally typeset
Search or ask a question
Author

Paul C. Hewett

Bio: Paul C. Hewett is an academic researcher from University of Cambridge. The author has contributed to research in topics: Quasar & Redshift. The author has an hindex of 75, co-authored 284 publications receiving 22834 citations.
Topics: Quasar, Redshift, Galaxy, Population, Luminosity


Papers
More filters
Journal ArticleDOI
30 Jun 2011-Nature
TL;DR: Observations of a quasar at a redshift of 7.3 are reported, suggesting that the neutral fraction of the intergalactic medium in front of ULAS J1120+0641 exceeded 0.1.
Abstract: Quasars have historically been identified in optical surveys, which are insensitive to sources at z > 6.5. Infrared deep-sky survey data now make it possible to explore higher redshifts, with the result that a luminous quasar (ULAS J1120+0641) with a redshift z = 7.085, beyond the previous high of z = 6.44, has now been identified. Further observations of this and other distant quasars should reveal the ionization state of the Universe as it was only about 0.75 billion years after the Big Bang. The intergalactic medium was not completely reionized until approximately a billion years after the Big Bang, as revealed1 by observations of quasars with redshifts of less than 6.5. It has been difficult to probe to higher redshifts, however, because quasars have historically been identified2,3,4 in optical surveys, which are insensitive to sources at redshifts exceeding 6.5. Here we report observations of a quasar (ULAS J112001.48+064124.3) at a redshift of 7.085, which is 0.77 billion years after the Big Bang. ULAS J1120+0641 has a luminosity of 6.3 × 1013L⊙ and hosts a black hole with a mass of 2 × 109M⊙ (where L⊙ and M⊙ are the luminosity and mass of the Sun). The measured radius of the ionized near zone around ULAS J1120+0641 is 1.9 megaparsecs, a factor of three smaller than is typical for quasars at redshifts between 6.0 and 6.4. The near-zone transmission profile is consistent with a Lyα damping wing5, suggesting that the neutral fraction of the intergalactic medium in front of ULAS J1120+0641 exceeded 0.1.

1,537 citations

Journal ArticleDOI
TL;DR: In this article, the emission-line and continuum properties of a set of broad absorption line QSOs and 29 normal BALs (i.e., non-BALs) are compared.
Abstract: The emission-line and continuum properties of a set of 25 broad absorption line QSOs (BALs) and 29 normal QSOs (i.e., non-BALs) are compared. This sample is augmented by an additional 17 BALs. A balnicity index is defined in order to separate the non-BALs from the BALs as objectively as possible, as well as to provide a measure of the strength of the broad absorption line features. It is found that the emission-line properties and the continua of non-BALs and BALs are remarkably similar.

936 citations

Journal ArticleDOI
TL;DR: In this paper, a simple color cut (g - r < 0.4) reveals the tidal stream of the Sagittarius dwarf spheroidal galaxy, as well as a number of other stellar structures in the field.
Abstract: We use Sloan Digital Sky Survey (SDSS) Data Release 5 (DR5) u, g, r, i, z photometry to study Milky Way halo substructure in the area around the north Galactic cap. A simple color cut (g - r < 0.4) reveals the tidal stream of the Sagittarius dwarf spheroidal galaxy, as well as a number of other stellar structures in the field. Two branches (A and B) of the Sagittarius stream are clearly visible in an RGB composite image created from three magnitude slices, and there is also evidence for a still more distant wrap behind the A branch. A comparison of these data with numerical models suggests that the shape of the Galactic dark halo is close to spherical.

917 citations

Journal ArticleDOI
TL;DR: In this article, the authors used the Sloan Digital Sky Survey (SDSS) Data Release 5 (DR5) u,g,r,i,z photometry to study Milky Way halo substructure in the area around the North Galactic Cap.
Abstract: We use Sloan Digital Sky Survey (SDSS) Data Release 5 (DR5) u,g,r,i,z photometry to study Milky Way halo substructure in the area around the North Galactic Cap. A simple color cut (g-r < 0.4) reveals the tidal stream of the Sagittarius dwarf spheroidal, as well as a number of other stellar structures in the field. Two branches (A and B) of the Sagittarius stream are clearly visible in an RGB-composite image created from 3 magnitude slices, and there is also evidence for a still more distant wrap behind the A branch. A comparison of these data with numerical models suggests that the shape of the Galactic dark halo is close to spherical.

872 citations

Journal ArticleDOI
TL;DR: The UKIRT Wide Field Camera (WFCAM) has a solid angle of 0.21deg 2. as mentioned in this paper introduced and characterised the ZYJHK photometric system of the camera, which covers the wavelength range 0:83 2:37 m.
Abstract: The UKIRT Infrared Deep Sky Survey is a set of v e surveys of complementary combinations of area, depth, and Galactic latitude, which began in 2005 May. The surveys use the UKIRT Wide Field Camera (WFCAM), which has a solid angle of 0.21deg 2 . Here we introduce and characterise the ZYJHK photometric system of the camera, which covers the wavelength range 0:83 2:37 m. We synthesise response functions for the v e passbands, and compute colours in the WFCAM, SDSS and 2MASS bands, for brown dwarfs, stars, galaxies and quasars of dieren t types. We provide a recipe for others to compute colours from their own spectra. Calculations are presented in the Vega system, and the computed osets to the AB system are provided, as well as colour equations between WFCAM lters and the SDSS and 2MASS passbands. We highlight the opportunities presented by the new Y lter at 0:97 1:07 m for surveys for hypothetical Y dwarfs (brown dwarfs cooler than T), and for quasars of very{high redshift, z > 6:4.

814 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Sloan Digital Sky Survey (SDSS) as mentioned in this paper provides the data to support detailed investigations of the distribution of luminous and non-luminous matter in the Universe: a photometrically and astrometrically calibrated digital imaging survey of pi steradians above about Galactic latitude 30 degrees in five broad optical bands.
Abstract: The Sloan Digital Sky Survey (SDSS) will provide the data to support detailed investigations of the distribution of luminous and non- luminous matter in the Universe: a photometrically and astrometrically calibrated digital imaging survey of pi steradians above about Galactic latitude 30 degrees in five broad optical bands to a depth of g' about 23 magnitudes, and a spectroscopic survey of the approximately one million brightest galaxies and 10^5 brightest quasars found in the photometric object catalog produced by the imaging survey. This paper summarizes the observational parameters and data products of the SDSS, and serves as an introduction to extensive technical on-line documentation.

10,039 citations

Journal ArticleDOI
Donald G. York1, Jennifer Adelman2, John E. Anderson2, Scott F. Anderson3  +148 moreInstitutions (29)
TL;DR: The Sloan Digital Sky Survey (SDSS) as discussed by the authors provides the data to support detailed investigations of the distribution of luminous and non-luminous matter in the universe: a photometrically and astrometrically calibrated digital imaging survey of π sr above about Galactic latitude 30° in five broad optical bands to a depth of g' ~ 23 mag.
Abstract: The Sloan Digital Sky Survey (SDSS) will provide the data to support detailed investigations of the distribution of luminous and nonluminous matter in the universe: a photometrically and astrometrically calibrated digital imaging survey of π sr above about Galactic latitude 30° in five broad optical bands to a depth of g' ~ 23 mag, and a spectroscopic survey of the approximately 106 brightest galaxies and 105 brightest quasars found in the photometric object catalog produced by the imaging survey. This paper summarizes the observational parameters and data products of the SDSS and serves as an introduction to extensive technical on-line documentation.

9,835 citations

Journal ArticleDOI
TL;DR: A series of improvements to the spectroscopic reductions are described, including better flat fielding and improved wavelength calibration at the blue end, better processing of objects with extremely strong narrow emission lines, and an improved determination of stellar metallicities.
Abstract: This paper describes the Seventh Data Release of the Sloan Digital Sky Survey (SDSS), marking the completion of the original goals of the SDSS and the end of the phase known as SDSS-II. It includes 11,663 deg^2 of imaging data, with most of the ~2000 deg^2 increment over the previous data release lying in regions of low Galactic latitude. The catalog contains five-band photometry for 357 million distinct objects. The survey also includes repeat photometry on a 120° long, 2°.5 wide stripe along the celestial equator in the Southern Galactic Cap, with some regions covered by as many as 90 individual imaging runs. We include a co-addition of the best of these data, going roughly 2 mag fainter than the main survey over 250 deg^2. The survey has completed spectroscopy over 9380 deg^2; the spectroscopy is now complete over a large contiguous area of the Northern Galactic Cap, closing the gap that was present in previous data releases. There are over 1.6 million spectra in total, including 930,000 galaxies, 120,000 quasars, and 460,000 stars. The data release includes improved stellar photometry at low Galactic latitude. The astrometry has all been recalibrated with the second version of the USNO CCD Astrograph Catalog, reducing the rms statistical errors at the bright end to 45 milliarcseconds per coordinate. We further quantify a systematic error in bright galaxy photometry due to poor sky determination; this problem is less severe than previously reported for the majority of galaxies. Finally, we describe a series of improvements to the spectroscopic reductions, including better flat fielding and improved wavelength calibration at the blue end, better processing of objects with extremely strong narrow emission lines, and an improved determination of stellar metallicities.

5,665 citations

Journal ArticleDOI
TL;DR: In this paper, supermassive black holes (BHs) have been found in 85 galaxies by dynamical modeling of spatially resolved kinematics, and it has been shown that BHs and bulges coevolve by regulating each other's growth.
Abstract: Supermassive black holes (BHs) have been found in 85 galaxies by dynamical modeling of spatially resolved kinematics. The Hubble Space Telescope revolutionized BH research by advancing the subject from its proof-of-concept phase into quantitative studies of BH demographics. Most influential was the discovery of a tight correlation between BH mass and the velocity dispersion σ of the bulge component of the host galaxy. Together with similar correlations with bulge luminosity and mass, this led to the widespread belief that BHs and bulges coevolve by regulating each other's growth. Conclusions based on one set of correlations from in brightest cluster ellipticals to in the smallest galaxies dominated BH work for more than a decade. New results are now replacing this simple story with a richer and more plausible picture in which BHs correlate differently with different galaxy components. A reasonable aim is to use this progress to refine our understanding of BH-galaxy coevolution. BHs with masses of 105−106M...

2,804 citations

Journal ArticleDOI
TL;DR: The final version published in MNRAS August 2007 included significant revisions including significant revisions to the original version April 2006.
Abstract: Final published version including significant revisions. Twenty four pages, fourteen figures. Original version April 2006; final version published in MNRAS August 2007

2,562 citations