scispace - formally typeset
Search or ask a question
Author

Paul C. McIntyre

Bio: Paul C. McIntyre is an academic researcher from Stanford University. The author has contributed to research in topics: Atomic layer deposition & Thin film. The author has an hindex of 59, co-authored 336 publications receiving 14511 citations. Previous affiliations of Paul C. McIntyre include University of Texas at Austin & Los Alamos National Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, high-kappa (approximately 25) zirconium oxide thin-films (approximately 8 nm) are formed on top of individual single-walled carbon nanotubes by atomic-layer deposition and used as gate dielectrics for nanotube field effect transistors.
Abstract: The integration of materials having a high dielectric constant (high-kappa) into carbon-nanotube transistors promises to push the performance limit for molecular electronics. Here, high-kappa (approximately 25) zirconium oxide thin-films (approximately 8 nm) are formed on top of individual single-walled carbon nanotubes by atomic-layer deposition and used as gate dielectrics for nanotube field-effect transistors. The p-type transistors exhibit subthreshold swings of S approximately 70 mV per decade, approaching the room-temperature theoretical limit for field-effect transistors. Key transistor performance parameters, transconductance and carrier mobility reach 6,000 S x m(-1) (12 microS per tube) and 3,000 cm2 x V(-1) x s(-1) respectively. N-type field-effect transistors obtained by annealing the devices in hydrogen exhibit S approximately 90 mV per decade. High voltage gains of up to 60 are obtained for complementary nanotube-based inverters. The atomic-layer deposition process affords gate insulators with high capacitance while being chemically benign to nanotubes, a key to the integration of advanced dielectrics into molecular electronics.

1,052 citations

Journal ArticleDOI
TL;DR: In this article, a nanocomposite anodes for the oxidation of water required to produce renewable fuels is presented. But the anodes are not suitable for large-scale electrochemical energy production with minimal global warming gas emission.
Abstract: A leading approach for large-scale electrochemical energy production with minimal global-warming gas emission is to use a renewable source of electricity, such as solar energy, to oxidize water, providing the abundant source of electrons needed in fuel synthesis. We report corrosion-resistant, nanocomposite anodes for the oxidation of water required to produce renewable fuels. Silicon, an earth-abundant element and an efficient photovoltaic material, is protected by atomic layer deposition (ALD) of a highly uniform, 2 nm thick layer of titanium dioxide (TiO(2)) and then coated with an optically transmitting layer of a known catalyst (3 nm iridium). Photoelectrochemical water oxidation was observed to occur below the reversible potential whereas dark electrochemical water oxidation was found to have low-to-moderate overpotentials at all pH values, resulting in an inferred photovoltage of ~550 mV. Water oxidation is sustained at these anodes for many hours in harsh pH and oxidative environments whereas comparable silicon anodes without the TiO(2) coating quickly fail. The desirable electrochemical efficiency and corrosion resistance of these anodes is made possible by the low electron-tunnelling resistance (<0.006 Ω cm(2) for p(+)-Si) and uniform thickness of atomic-layer deposited TiO(2).

672 citations

Journal ArticleDOI
TL;DR: A review of the literature on size effects in ferroelectric materials, with an emphasis on thin film perovskite ferroelectrics, can be found in this paper.
Abstract: ▪ Abstract This paper reviews the literature on size effects in ferroelectric materials, with an emphasis on thin film perovskite ferroelectrics. The roles of boundary conditions, defect chemistry, electrode interfaces, surface layers, and microstructure in controlling the measured properties of ferroelectric films, as well as the observed deviation from bulk properties are discussed. Examples of the manifestation of size effects in terms of the low and high field dielectric properties, the piezoelectric effect, and the leakage behavior of films are given.

482 citations

Journal ArticleDOI
TL;DR: In this article, single-crystal Ge nanowires are synthesized by a low-temperature (275°C) chemical vapor deposition (CVD) method, and Boron doped p-type GeNW field effect transistors (FETs) with back-gates and thin SiO2 (10 nm) gate insulators are constructed.
Abstract: Single-crystal Ge nanowires are synthesized by a low-temperature (275 °C) chemical vapor deposition (CVD) method. Boron doped p-type GeNW field-effect transistors (FETs) with back-gates and thin SiO2 (10 nm) gate insulators are constructed. Hole mobility higher than 600 cm2/V s is observed in these devices, suggesting high quality and excellent electrical properties of as-grown Ge wires. In addition, integration of high-κ HfO2 (12 nm) gate dielectric into nanowire FETs with top-gates is accomplished with promising device characteristics obtained. The nanowire synthesis and device fabrication steps are all performed below 400 °C, opening a possibility of building three-dimensional electronics with CVD-derived Ge nanowires.

446 citations

Journal ArticleDOI
TL;DR: In this article, the feasibility of integrating a high-permittivity gate dielectric material zirconium oxide into the MOS capacitors fabricated on pure germanium substrates was demonstrated.
Abstract: For the first time, we have successfully demonstrated the feasibility of integrating a high-permittivity (/spl kappa/) gate dielectric material zirconium oxide into the MOS capacitors fabricated on pure germanium substrates. The entire fabrication process was essentially performed at room temperature with the exception of a 410/spl deg/C forming gas anneal. After processing steps intended to remove the germanium native oxide interlayer between the zirconium oxide dielectric and germanium substrate, an excellent capacitance-based equivalent SiO/sub 2/ thickness (EOT) on the order of 5-8 /spl Aring/ and capacitance-voltage (C-V) characteristics with hysteresis of 16 mV have been achieved. Additionally, excellent device yield and uniformity were possible using this low thermal budget process.

324 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI

4,756 citations