scispace - formally typeset
Search or ask a question
Author

Paul Cain

Bio: Paul Cain is an academic researcher. The author has contributed to research in topics: Logic gate & Transistor model. The author has an hindex of 2, co-authored 2 publications receiving 161 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This paper provides a comprehensive review of the current status of OTFT technologies ranging from material, device, process, and integration, to design and system applications, and clarifies the real challenges behind to be addressed.
Abstract: Attributed to its advantages of super mechanical flexibility, very low-temperature processing, and compatibility with low cost and high throughput manufacturing, organic thin-film transistor (OTFT) technology is able to bring electrical, mechanical, and industrial benefits to a wide range of new applications by activating nonflat surfaces with flexible displays, sensors, and other electronic functions. Despite both strong application demand and these significant technological advances, there is still a gap to be filled for OTFT technology to be widely commercially adopted. This paper provides a comprehensive review of the current status of OTFT technologies ranging from material, device, process, and integration, to design and system applications, and clarifies the real challenges behind to be addressed.

204 citations

Journal ArticleDOI
TL;DR: In this article, the authors report a systematic approach to extract parameters from organic thin-film transistors (OTFTs) that are used for compact Spice models, where both currentvoltage and capacitance-voltage measurements are employed.
Abstract: In this paper, we report a systematic approach to extract parameters from organic thin film transistors (OTFTs) that are used for compact Spice models. The universal organic thin-film transistor (UOTFT) model and Silvaco's Smartspice platform are utilized for simulations whereas experimental data are collected from Plastic Logic's (PL) thin-film transistors that are processed on flexible plastic substrates. The parameter extraction procedure is outlined where both current-voltage and capacitance-voltage measurements are employed. This is then followed by simulations of inverters and ring oscillators to assess the results against simple logic circuits.

16 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This Review discusses current understanding of charge carrier transport in conjugated polymers and small molecule semiconductors and strategies to improve their performance.
Abstract: Conjugated polymers and molecular semiconductors are emerging as a viable semiconductor technology in industries such as displays, electronics, renewable energy, sensing and healthcare. A key enabling factor has been significant scientific progress in improving their charge transport properties and carrier mobilities, which has been made possible by a better understanding of the molecular structure–property relationships and the underpinning charge transport physics. Here we aim to present a coherent review of how we understand charge transport in these high-mobility van der Waals bonded semiconductors. Specific questions of interest include estimates for intrinsic limits to the carrier mobilities that might ultimately be achievable; a discussion of the coupling between charge and structural dynamics; the importance of molecular conformations and mesoscale structural features; how the transport physics of conjugated polymers and small molecule semiconductors are related; and how the incorporation of counterions in doped films—as used, for example, in bioelectronics and thermoelectric devices—affects the electronic structure and charge transport properties. Organic semiconductors are making their way into applications ranging from display technology to flexible electronics and biomedical applications. This Review discusses current understanding of charge carrier transport in these materials and strategies to improve their performance.

408 citations

Journal ArticleDOI
01 Oct 2018

156 citations

Journal ArticleDOI
TL;DR: A rare one-dimensional optical waveguiding crystal of dithieno[3,2-a:2',3'-c]phenazine with high aspect ratio displaying high mechanical flexibility and selective self-absorbance of the blue part of its fluorescence (FL) is presented.
Abstract: We present the one-dimensional optical-waveguiding crystal dithieno[3,2-a:2',3'-c]phenazine with a high aspect ratio, high mechanical flexibility, and selective self-absorbance of the blue part of its fluorescence (FL). While macrocrystals exhibit elasticity, microcrystals deposited at a glass surface behave more like plastic crystals due to significant surface adherence, making them suitable for constructing photonic circuits via micromechanical operation with an atomic-force-microscopy cantilever tip. The flexible crystalline waveguides display optical-path-dependent FL signals at the output termini in both straight and bent configurations, making them appropriate for wavelength-division multiplexing technologies. A reconfigurable 2×2-directional coupler fabricated via micromanipulation by combining two arc-shaped crystals splits the optical signal via evanescent coupling and delivers the signals at two output terminals with different splitting ratios. The presented mechanical micromanipulation technique could also be effectively extended to other flexible crystals.

140 citations