scispace - formally typeset
Search or ask a question
Author

Paul Cos

Other affiliations: University of Mississippi
Bio: Paul Cos is an academic researcher from University of Antwerp. The author has contributed to research in topics: Antiprotozoal & Leishmania infantum. The author has an hindex of 50, co-authored 287 publications receiving 10532 citations. Previous affiliations of Paul Cos include University of Mississippi.


Papers
More filters
Journal ArticleDOI
TL;DR: This review provides a number of recommendations that will help to define a more sound 'proof-of-concept' for antibacterial, antifungal, antiviral and antiparasitic potential in natural products.

1,373 citations

Journal ArticleDOI
TL;DR: The structure-activity relationship of flavonoids as inhibitors of xanthine oxidase and as scavengers of the superoxide radical, produced by the action of the enzyme xanthines oxidase, was investigated and showed slightly higher inhibitory activity than flavonols.
Abstract: The structure-activity relationship of flavonoids as inhibitors of xanthine oxidase and as scavengers of the superoxide radical, produced by the action of the enzyme xanthine oxidase, was investigated. The hydroxyl groups at C-5 and C-7 and the double bond between C-2 and C-3 were essential for a high inhibitory activity on xanthine oxidase. Flavones showed slightly higher inhibitory activity than flavonols. All flavonoid derivatives except isorhamnetin (30) were less active than the original compounds. For a high superoxide scavenging activity on the other hand, a hydroxyl group at C-3' in ring B and at C-3 were essential. According to their effect on xanthine oxidase and as superoxide scavengers, the flavonoids could be classified into six groups: superoxide scavengers without inhibitory activity on xanthine oxidase (category A), xanthine oxidase inhibitors without any additional superoxide scavenging activity (category B), xanthine oxidase inhibitors with an additional superoxide scavenging activity (category C), xanthine oxidase inhibitors with an additional pro-oxidant effect on the production of superoxide (category D), flavonoids with a marginal effect on xanthine oxidase but with a prooxidant effect on the production of superoxide (category E), and finally, flavonoids with no effect on xanthine oxidase or superoxide (category F).

979 citations

Journal ArticleDOI
TL;DR: The data suggest that QSI may increase the success of antibiotic treatment by increasing the susceptibility of bacterial biofilms and/or by increasing host survival following infection.
Abstract: Although the exact role of quorum sensing (QS) in various stages of biofilm formation, maturation, and dispersal and in biofilm resistance is not entirely clear, the use of QS inhibitors (QSI) has been proposed as a potential antibiofilm strategy. We have investigated whether QSI enhance the susceptibility of bacterial biofilms to treatment with conventional antimicrobial agents. The QSI used in our study target the acyl-homoserine lactone-based QS system present in Pseudomonas aeruginosa and Burkholderia cepacia complex organisms (baicalin hydrate, cinnamaldehyde) or the peptide-based system present in Staphylococcus aureus (hamamelitannin). The effect of tobramycin (P. aeruginosa, B. cepacia complex) and clindamycin or vancomycin (S. aureus), alone or in combination with QSI, was evaluated in various in vitro and in vivo biofilm model systems, including two invertebrate models and one mouse pulmonary infection model. In vitro the combined use of an antibiotic and a QSI generally resulted in increased killing compared to killing by an antibiotic alone, although reductions were strain and model dependent. A significantly higher fraction of infected Galleria mellonella larvae and Caenorhabditis elegans survived infection following combined treatment, compared to treatment with an antibiotic alone. Finally, the combined use of tobramycin and baicalin hydrate reduced the microbial load in the lungs of BALB/c mice infected with Burkholderia cenocepacia more than tobramycin treatment alone. Our data suggest that QSI may increase the success of antibiotic treatment by increasing the susceptibility of bacterial biofilms and/or by increasing host survival following infection.

455 citations

Journal ArticleDOI
TL;DR: The present review is focused mainly on the antioxidant activity of proanthocyanidins and its relevancy in vivo and the three most important mechanisms of their antioxidant action will be discussed, i.e. free radical scavenging activity, chelation of transition metals, and inhibition of enzymes.
Abstract: Polyphenolic compounds are widely distributed in higher plants and are an integral part of the human diet. Recent interest in these substances has been stimulated by their potential health benefits, which are believed to arise mainly from their antioxidant activity. In the past years, the antioxidant activity of flavonoids has been studied in detail. An important but often overlooked group of polyphenols is that of the proanthocyanidins. Therefore, the present review is focused mainly on the antioxidant activity of proanthocyanidins and its relevancy in vivo. The three most important mechanisms of their antioxidant action will be discussed, i.e. free radical scavenging activity, chelation of transition metals, and inhibition of enzymes. In addition, the protective role of proanthocyanidins against lipid peroxidation and peroxynitrite, as well as their antimicrobial properties will be discussed. To study the in vivo relevancy of the proanthocyanidin activities, the knowledge of their pharmacokinetic parameters is crucial. Although bioavailability and metabolism data on polyphenols in general and proanthocyanidins in particular are still largely unavailable, the first reports indicate that at least monomers and smaller oligomeric procyanidins are absorbed. There is also considerable scientific and public interest in the important role that antioxidants may play in health care, e.g. by acting as cancer chemopreventive and anti-inflammatory agents and by reducing risk of cardiovascular mortality. Each of these aspects will be discussed, with special attention to the role of proanthocyanidins on apoptosis, gene expression and transcription factors, such as NF-kappa B.

399 citations

Journal ArticleDOI
TL;DR: Since phytoestrogens are structurally very similar to the estrogen 17beta-estradiol, they may exhibit selective estrogen receptor modulating activities, and special attention will be given to the hormonal effects of various isoflavonoids, including genistein, daidzein, coumestrol and equol, several prenylated flavonoid, especially 8-prenylnaringenin, and the stilbene resveratrol.
Abstract: Phytoestrogens are polyphenolic non-steroidal plant compounds with estrogen-like biological activity. Based on their chemical structure, phytoestrogens can be classified into four main groups, i. e., isoflavonoids, flavonoids, stilbenes, and lignans. For each group, the chemistry, dietary sources and biotransformation of the most interesting compounds will be discussed. Since phytoestrogens are structurally very similar to the estrogen 17beta-estradiol, they may exhibit selective estrogen receptor modulating activities. Therefore, special attention will be given to the hormonal effects of various isoflavonoids, including genistein, daidzein, coumestrol and equol, several prenylated flavonoids, especially 8-prenylnaringenin, and the stilbene resveratrol. Furthermore, their non-hormonal effects will be discussed briefly. Finally, the latest developments on the potential protective properties of phytoestrogens and phytoestrogen-containing foods against hormone-dependent breast and prostate cancers and cardiovascular diseases, and as estrogen replacement therapy for postmenopausal women will be discussed.

312 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
TL;DR: This review covers the literature published in 2014 for marine natural products, with 1116 citations referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms.

4,649 citations

Journal ArticleDOI
TL;DR: The diversity and multiple mechanisms of flavonoid action, together with the numerous methods of initiation, detection and measurement of oxidative processes in vitro and in vivo offer plausible explanations for existing discrepancies in structure-activity relationships.
Abstract: Flavonoids are a class of secondary plant phenolics with significant antioxidant and chelating properties. In the human diet, they are most concentrated in fruits, vegetables, wines, teas and cocoa. Their cardioprotective effects stem from the ability to inhibit lipid peroxidation, chelate redox-active metals, and attenuate other processes involving reactive oxygen species. Flavonoids occur in foods primarily as glycosides and polymers that are degraded to variable extents in the digestive tract. Although metabolism of these compounds remains elusive, enteric absorption occurs sufficiently to reduce plasma indices of oxidant status. The propensity of a flavonoid to inhibit free-radical mediated events is governed by its chemical structure. Since these compounds are based on the flavan nucleus, the number, positions, and types of substitutions influence radical scavenging and chelating activity. The diversity and multiple mechanisms of flavonoid action, together with the numerous methods of initiation, detection and measurement of oxidative processes in vitro and in vivo offer plausible explanations for existing discrepancies in structure-activity relationships. Despite some inconsistent lines of evidence, several structure-activity relationships are well established in vitro. Multiple hydroxyl groups confer upon the molecule substantial antioxidant, chelating and prooxidant activity. Methoxy groups introduce unfavorable steric effects and increase lipophilicity and membrane partitioning. A double bond and carbonyl function in the heterocycle or polymerization of the nuclear structure increases activity by affording a more stable flavonoid radical through conjugation and electron delocalization. Further investigation of the metabolism of these phytochemicals is justified to extend structure-activity relationships (SAR) to preventive and therapeutic nutritional strategies.

3,567 citations

Journal ArticleDOI
TL;DR: Some of the recent advances in flavonoid research are reviewed and the role of anthocyanins and flavones in providing stable blue flower colours in the angiosperms is outlined.

3,465 citations