scispace - formally typeset
Search or ask a question
Author

Paul Coucke

Bio: Paul Coucke is an academic researcher from Ghent University. The author has contributed to research in topics: Pseudoxanthoma elasticum & Marfan syndrome. The author has an hindex of 55, co-authored 212 publications receiving 11905 citations. Previous affiliations of Paul Coucke include Ghent University Hospital & Baylor College of Medicine.


Papers
More filters
Journal ArticleDOI
TL;DR: These data definitively implicate perturbation of TGFβ signaling in many common human phenotypes, including craniosynostosis, cleft palate, arterial aneurysms, congenital heart disease and mental retardation, and suggest that comprehensive mechanistic insight will require consideration of both primary and compensatory events.
Abstract: We report heterozygous mutations in the genes encoding either type I or type II transforming growth factor β receptor in ten families with a newly described human phenotype that includes widespread perturbations in cardiovascular, craniofacial, neurocognitive and skeletal development. Despite evidence that receptors derived from selected mutated alleles cannot support TGFβ signal propagation, cells derived from individuals heterozygous with respect to these mutations did not show altered kinetics of the acute phase response to administered ligand. Furthermore, tissues derived from affected individuals showed increased expression of both collagen and connective tissue growth factor, as well as nuclear enrichment of phosphorylated Smad2, indicative of increased TGFβ signaling. These data definitively implicate perturbation of TGFβ signaling in many common human phenotypes, including craniosynostosis, cleft palate, arterial aneurysms, congenital heart disease and mental retardation, and suggest that comprehensive mechanistic insight will require consideration of both primary and compensatory events.

1,564 citations

Journal ArticleDOI
TL;DR: An additional cohort of 40 patients who had vascular Ehlers–Danlos syndrome without the characteristic type III collagen abnormalities or the craniofacial features of the Loeys–Dietz syndrome were screened and a mutation in TGFBR1 or TGF BR2 was found.
Abstract: Background The Loeys–Dietz syndrome is a recently described autosomal dominant aortic-aneurysm syndrome with widespread systemic involvement The disease is characterized by the triad of arterial tortuosity and aneurysms, hypertelorism, and bifid uvula or cleft palate and is caused by heterozygous mutations in the genes encoding transforming growth factor β receptors 1 and 2 (TGFBR1 and TGFBR2, respectively) Methods We undertook the clinical and molecular characterization of 52 affected families Forty probands presented with typical manifestations of the Loeys–Dietz syndrome In view of the phenotypic overlap between this syndrome and vascular Ehlers–Danlos syndrome, we screened an additional cohort of 40 patients who had vascular Ehlers–Danlos syndrome without the characteristic type III collagen abnormalities or the craniofacial features of the Loeys–Dietz syndrome Results We found a mutation in TGFBR1 or TGFBR2 in all probands with typical Loeys–Dietz syndrome (type I) and in 12 probands presenting

1,391 citations

Journal ArticleDOI
TL;DR: The data on genotype–phenotype relationships indicate that the two collagen chains play very different roles in matrix integrity and that phenotype depends on intracellular and extracellular events.
Abstract: Osteogenesis imperfecta (OI) is a generalized disorder of connective tissue characterized by fragile bones and easy susceptibility to fracture. Most cases of OI are caused by mutations in type I collagen. We have identified and assembled structural mutations in type I collagen genes (COL1A1 and COL1A2, encoding the proalpha1(I) and proalpha2(I) chains, respectively) that result in OI. Quantitative defects causing type I OI were not included. Of these 832 independent mutations, 682 result in substitution for glycine residues in the triple helical domain of the encoded protein and 150 alter splice sites. Distinct genotype-phenotype relationships emerge for each chain. One-third of the mutations that result in glycine substitutions in alpha1(I) are lethal, especially when the substituting residues are charged or have a branched side chain. Substitutions in the first 200 residues are nonlethal and have variable outcome thereafter, unrelated to folding or helix stability domains. Two exclusively lethal regions (helix positions 691-823 and 910-964) align with major ligand binding regions (MLBRs), suggesting crucial interactions of collagen monomers or fibrils with integrins, matrix metalloproteinases (MMPs), fibronectin, and cartilage oligomeric matrix protein (COMP). Mutations in COL1A2 are predominantly nonlethal (80%). Lethal substitutions are located in eight regularly spaced clusters along the chain, supporting a regional model. The lethal regions align with proteoglycan binding sites along the fibril, suggesting a role in fibril-matrix interactions. Recurrences at the same site in alpha2(I) are generally concordant for outcome, unlike alpha1(I). Splice site mutations comprise 20% of helical mutations identified in OI patients, and may lead to exon skipping, intron inclusion, or the activation of cryptic splice sites. Splice site mutations in COL1A1 are rarely lethal; they often lead to frameshifts and the mild type I phenotype. In alpha2(I), lethal exon skipping events are located in the carboxyl half of the chain. Our data on genotype-phenotype relationships indicate that the two collagen chains play very different roles in matrix integrity and that phenotype depends on intracellular and extracellular events.

587 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the correlation between the fibrillin-1 (FBN1) genotype and the nature and severity of the clinical phenotype, including skeletal, cardiovascular, ophthalmologic, skin, pulmonary, and dural.
Abstract: Mutations in the fibrillin-1 (FBN1) gene cause Marfan syndrome (MFS) and have been associated with a wide range of overlapping phenotypes. Clinical care is complicated by variable age at onset and the wide range of severity of aortic features. The factors that modulate phenotypical severity, both among and within families, remain to be determined. The availability of international FBN1 mutation Universal Mutation Database (UMD-FBN1) has allowed us to perform the largest collaborative study ever reported, to investigate the correlation between the FBN1 genotype and the nature and severity of the clinical phenotype. A range of qualitative and quantitative clinical parameters (skeletal, cardiovascular, ophthalmologic, skin, pulmonary, and dural) was compared for different classes of mutation (types and locations) in 1,013 probands with a pathogenic FBN1 mutation. A higher probability of ectopia lentis was found for patients with a missense mutation substituting or producing a cysteine, when compared with other missense mutations. Patients with an FBN1 premature termination codon had a more severe skeletal and skin phenotype than did patients with an inframe mutation. Mutations in exons 24-32 were associated with a more severe and complete phenotype, including younger age at diagnosis of type I fibrillinopathy and higher probability of developing ectopia lentis, ascending aortic dilatation, aortic surgery, mitral valve abnormalities, scoliosis, and shorter survival; the majority of these results were replicated even when cases of neonatal MFS were excluded. These correlations, found between different mutation types and clinical manifestations, might be explained by different underlying genetic mechanisms (dominant negative versus haploinsufficiency) and by consideration of the two main physiological functions of fibrillin-1 (structural versus mediator of TGF beta signalling). Exon 24-32 mutations define a high-risk group for cardiac manifestations associated with severe prognosis at all ages.

491 citations

Journal ArticleDOI
TL;DR: In this study, LEMD3 interacted with BMP and activin-TGFβ receptor–activated Smads and antagonized both signaling pathways in human cells and interacted with XMAN1, the Xenopus laevis ortholog, which antagonizes BMP signaling during embryogenesis.
Abstract: Osteopoikilosis, Buschke-Ollendorff syndrome (BOS) and melorheostosis are disorders characterized by increased bone density. The occurrence of one or more of these phenotypes in the same individual or family suggests that these entities might be allelic. We collected data from three families in which affected individuals had osteopoikilosis with or without manifestations of BOS or melorheostosis. A genome-wide linkage analysis in these families, followed by the identification of a microdeletion in an unrelated individual with these diseases, allowed us to map the gene that is mutated in osteopoikilosis. All the affected individuals that we investigated were heterozygous with respect to a loss-of-function mutation in LEMD3 (also called MAN1), which encodes an inner nuclear membrane protein. A somatic mutation in the second allele of LEMD3 could not be identified in fibroblasts from affected skin of an individual with BOS and an individual with melorheostosis. XMAN1, the Xenopus laevis ortholog, antagonizes BMP signaling during embryogenesis. In this study, LEMD3 interacted with BMP and activin-TGFbeta receptor-activated Smads and antagonized both signaling pathways in human cells.

383 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Advanced and universally applicable models for relative quantification and inter-run calibration with proper error propagation along the entire calculation track are outlined in qBase, a free program for the management and automated analysis of qPCR data.
Abstract: Although quantitative PCR (qPCR) is becoming the method of choice for expression profiling of selected genes, accurate and straightforward processing of the raw measurements remains a major hurdle. Here we outline advanced and universally applicable models for relative quantification and inter-run calibration with proper error propagation along the entire calculation track. These models and algorithms are implemented in qBase, a free program for the management and automated analysis of qPCR data.

3,641 citations

Journal ArticleDOI
25 Jul 2008-Cell
TL;DR: The mechanistic basis and clinical relevance of TGFbeta's role in cancer is becoming increasingly clear, paving the way for a better understanding of the complexity and therapeutic potential of this pathway.

3,299 citations

Journal ArticleDOI
TL;DR: The growing understanding of TGFbeta signaling through the Smad pathway provides general principles for how animal cells translate complex inputs into concrete behavior.
Abstract: Smad transcription factors lie at the core of one of the most versatile cytokine signaling pathways in metazoan biology-the transforming growth factor-beta (TGFbeta) pathway. Recent progress has shed light into the processes of Smad activation and deactivation, nucleocytoplasmic dynamics, and assembly of transcriptional complexes. A rich repertoire of regulatory devices exerts control over each step of the Smad pathway. This knowledge is enabling work on more complex questions about the organization, integration, and modulation of Smad-dependent transcriptional programs. We are beginning to uncover self-enabled gene response cascades, graded Smad response mechanisms, and Smad-dependent synexpression groups. Our growing understanding of TGFbeta signaling through the Smad pathway provides general principles for how animal cells translate complex inputs into concrete behavior.

2,333 citations

Journal ArticleDOI
TL;DR: Human Splicing Finder is designed, a tool to predict the effects of mutations on splicing signals or to identify splicing motifs in any human sequence, and it is shown that the mutation effect was correctly predicted in almost all cases.
Abstract: Thousands of mutations are identified yearly. Although many directly affect protein expression, an increasing proportion of mutations is now believed to influence mRNA splicing. They mostly affect existing splice sites, but synonymous, non-synonymous or nonsense mutations can also create or disrupt splice sites or auxiliary cis-splicing sequences. To facilitate the analysis of the different mutations, we designed Human Splicing Finder (HSF), a tool to predict the effects of mutations on splicing signals or to identify splicing motifs in any human sequence. It contains all available matrices for auxiliary sequence prediction as well as new ones for binding sites of the 9G8 and Tra2-beta Serine-Arginine proteins and the hnRNP A1 ribonucleoprotein. We also developed new Position Weight Matrices to assess the strength of 5' and 3' splice sites and branch points. We evaluated HSF efficiency using a set of 83 intronic and 35 exonic mutations known to result in splicing defects. We showed that the mutation effect was correctly predicted in almost all cases. HSF could thus represent a valuable resource for research, diagnostic and therapeutic (e.g. therapeutic exon skipping) purposes as well as for global studies, such as the GEN2PHEN European Project or the Human Variome Project.

2,300 citations