scispace - formally typeset
Search or ask a question
Author

Paul Debevec

Bio: Paul Debevec is an academic researcher from Google. The author has contributed to research in topics: Rendering (computer graphics) & Image-based lighting. The author has an hindex of 56, co-authored 240 publications receiving 18468 citations. Previous affiliations of Paul Debevec include AmeriCorps VISTA & Institute for Creative Technologies.


Papers
More filters
Proceedings ArticleDOI
03 Aug 1997
TL;DR: This work discusses how this work is applicable in many areas of computer graphics involving digitized photographs, including image-based modeling, image compositing, and image processing, and demonstrates a few applications of having high dynamic range radiance maps.
Abstract: We present a method of recovering high dynamic range radiance maps from photographs taken with conventional imaging equipment. In our method, multiple photographs of the scene are taken with different amounts of exposure. Our algorithm uses these differently exposed photographs to recover the response function of the imaging process, up to factor of scale, using the assumption of reciprocity. With the known response function, the algorithm can fuse the multiple photographs into a single, high dynamic range radiance map whose pixel values are proportional to the true radiance values in the scene. We demonstrate our method on images acquired with both photochemical and digital imaging processes. We discuss how this work is applicable in many areas of computer graphics involving digitized photographs, including image-based modeling, image compositing, and image processing. Lastly, we demonstrate a few applications of having high dynamic range radiance maps, such as synthesizing realistic motion blur and simulating the response of the human visual system.

2,967 citations

Proceedings ArticleDOI
01 Aug 1996
TL;DR: This work presents a new approach for modeling and rendering existing architectural scenes from a sparse set of still photographs, which combines both geometry-based and imagebased techniques, and presents view-dependent texture mapping, a method of compositing multiple views of a scene that better simulates geometric detail on basic models.
Abstract: We present a new approach for modeling and rendering existing architectural scenes from a sparse set of still photographs. Our modeling approach, which combines both geometry-based and imagebased techniques, has two components. The first component is a photogrammetricmodeling method which facilitates the recovery of the basic geometry of the photographed scene. Our photogrammetric modeling approach is effective, convenient, and robust because it exploits the constraints that are characteristic of architectural scenes. The second component is a model-based stereo algorithm, which recovers how the real scene deviates from the basic model. By making use of the model, our stereo technique robustly recovers accurate depth from widely-spaced image pairs. Consequently, our approach can model large architectural environments with far fewer photographs than current image-based modeling approaches. For producing renderings, we present view-dependent texture mapping, a method of compositing multiple views of a scene that better simulates geometric detail on basic models. Our approach can be used to recover models for use in either geometry-based or image-based rendering systems. We present results that demonstrate our approach’s ability to create realistic renderings of architectural scenes from viewpoints far from the original photographs. CR Descriptors: I.2.10 [Artificial Intelligence]: Vision and Scene Understanding Modeling and recovery of physical attributes; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism Color, shading, shadowing, and texture I.4.8 [Image Processing]: Scene Analysis Stereo; J.6 [Computer-Aided Engineering]: Computer-aided design (CAD).

2,159 citations

Book
28 May 2010
TL;DR: The Human Visual System and HDR Tone Mapping and Frequency Domain and Gradient Domain Tone Reproduction and an Image-Based Lighting List of Symbols References Index are presented.
Abstract: Foreword Preface 1 Introduction 2 Light And Color 3 HDR Image Encodings 4 HDR Image Capture 5 Display Devices 6 The Human Visual System and HDR Tone Mapping 7 Spatial Tone Reproduction 8 Frequency Domain and Gradient Domain Tone Reproduction 9 Image-Based Lighting List of Symbols References Index

1,484 citations

Proceedings ArticleDOI
24 Jul 1998
TL;DR: A method that uses measured scene radiance and global illumination in order to add new objects to light-based models with correct lighting and the relevance of the technique to recovering surface reflectance properties in uncontrolled lighting situations is discussed.
Abstract: We present a method that uses measured scene radiance and global illumination in order to add new objects to light-based models with correct lighting. The method uses a high dynamic range image-based model of the scene, rather than synthetic light sources, to illuminate the new objects. To compute the illumination, the scene is considered as three components: the distant scene, the local scene, and the synthetic objects. The distant scene is assumed to be photometrically unaffected by the objects, obviating the need for reflectance model information. The local scene is endowed with estimated reflectance model information so that it can catch shadows and receive reflected light from the new objects. Renderings are created with a standard global illumination method by simulating the interaction of light amongst the three components. A differential rendering technique allows for good results to be obtained when only an estimate of the local scene reflectance properties is known.We apply the general method to the problem of rendering synthetic objects into real scenes. The light-based model is constructed from an approximate geometric model of the scene and by using a light probe to measure the incident illumination at the location of the synthetic objects. The global illumination solution is then composited into a photograph of the scene using the differential rendering technique. We conclude by discussing the relevance of the technique to recovering surface reflectance properties in uncontrolled lighting situations. Applications of the method include visual effects, interior design, and architectural visualization.

1,204 citations

Proceedings ArticleDOI
01 Jul 2000
TL;DR: A method to acquire the reflectance field of a human face and use these measurements to render the face under arbitrary changes in lighting and viewpoint and demonstrates the technique with synthetic renderings of a person's face under novel illumination and viewpoints.
Abstract: We present a method to acquire the reflectance field of a human face and use these measurements to render the face under arbitrary changes in lighting and viewpoint. We first acquire images of the face from a small set of viewpoints under a dense sampling of incident illumination directions using a light stage. We then construct a reflectance function image for each observed image pixel from its values over the space of illumination directions. From the reflectance functions, we can directly generate images of the face from the original viewpoints in any form of sampled or computed illumination. To change the viewpoint, we use a model of skin reflectance to estimate the appearance of the reflectance functions for novel viewpoints. We demonstrate the technique with synthetic renderings of a person's face under novel illumination and viewpoints.

1,102 citations


Cited by
More filters
Book
30 Sep 2010
TL;DR: Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images and takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene.
Abstract: Humans perceive the three-dimensional structure of the world with apparent ease. However, despite all of the recent advances in computer vision research, the dream of having a computer interpret an image at the same level as a two-year old remains elusive. Why is computer vision such a challenging problem and what is the current state of the art? Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both for specialized applications such as medical imaging, and for fun, consumer-level tasks such as image editing and stitching, which students can apply to their own personal photos and videos. More than just a source of recipes, this exceptionally authoritative and comprehensive textbook/reference also takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene. These problems are also analyzed using statistical models and solved using rigorous engineering techniques Topics and features: structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses; presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects; provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, and Bayesian estimation theory; suggests additional reading at the end of each chapter, including the latest research in each sub-field, in addition to a full Bibliography at the end of the book; supplies supplementary course material for students at the associated website, http://szeliski.org/Book/. Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.

4,146 citations

Journal ArticleDOI
TL;DR: This work refers one to the original survey for descriptions of potential applications, summaries of AR system characteristics, and an introduction to the crucial problem of registration, including sources of registration error and error-reduction strategies.
Abstract: In 1997, Azuma published a survey on augmented reality (AR). Our goal is to complement, rather than replace, the original survey by presenting representative examples of the new advances. We refer one to the original survey for descriptions of potential applications (such as medical visualization, maintenance and repair of complex equipment, annotation, and path planning); summaries of AR system characteristics (such as the advantages and disadvantages of optical and video approaches to blending virtual and real, problems in display focus and contrast, and system portability); and an introduction to the crucial problem of registration, including sources of registration error and error-reduction strategies.

3,624 citations

Journal ArticleDOI
01 Jul 2006
TL;DR: This work presents a system for interactively browsing and exploring large unstructured collections of photographs of a scene using a novel 3D interface that consists of an image-based modeling front end that automatically computes the viewpoint of each photograph and a sparse 3D model of the scene and image to model correspondences.
Abstract: We present a system for interactively browsing and exploring large unstructured collections of photographs of a scene using a novel 3D interface. Our system consists of an image-based modeling front end that automatically computes the viewpoint of each photograph as well as a sparse 3D model of the scene and image to model correspondences. Our photo explorer uses image-based rendering techniques to smoothly transition between photographs, while also enabling full 3D navigation and exploration of the set of images and world geometry, along with auxiliary information such as overhead maps. Our system also makes it easy to construct photo tours of scenic or historic locations, and to annotate image details, which are automatically transferred to other relevant images. We demonstrate our system on several large personal photo collections as well as images gathered from Internet photo sharing sites.

3,398 citations

Proceedings ArticleDOI
20 Sep 1999
TL;DR: A non-parametric method for texture synthesis that aims at preserving as much local structure as possible and produces good results for a wide variety of synthetic and real-world textures.
Abstract: A non-parametric method for texture synthesis is proposed. The texture synthesis process grows a new image outward from an initial seed, one pixel at a time. A Markov random field model is assumed, and the conditional distribution of a pixel given all its neighbors synthesized so far is estimated by querying the sample image and finding all similar neighborhoods. The degree of randomness is controlled by a single perceptually intuitive parameter. The method aims at preserving as much local structure as possible and produces good results for a wide variety of synthetic and real-world textures.

2,972 citations

Proceedings ArticleDOI
03 Aug 1997
TL;DR: This work discusses how this work is applicable in many areas of computer graphics involving digitized photographs, including image-based modeling, image compositing, and image processing, and demonstrates a few applications of having high dynamic range radiance maps.
Abstract: We present a method of recovering high dynamic range radiance maps from photographs taken with conventional imaging equipment. In our method, multiple photographs of the scene are taken with different amounts of exposure. Our algorithm uses these differently exposed photographs to recover the response function of the imaging process, up to factor of scale, using the assumption of reciprocity. With the known response function, the algorithm can fuse the multiple photographs into a single, high dynamic range radiance map whose pixel values are proportional to the true radiance values in the scene. We demonstrate our method on images acquired with both photochemical and digital imaging processes. We discuss how this work is applicable in many areas of computer graphics involving digitized photographs, including image-based modeling, image compositing, and image processing. Lastly, we demonstrate a few applications of having high dynamic range radiance maps, such as synthesizing realistic motion blur and simulating the response of the human visual system.

2,967 citations