scispace - formally typeset
Search or ask a question
Author

Paul F. Jäger

Bio: Paul F. Jäger is an academic researcher from German Cancer Research Center. The author has contributed to research in topics: Deep learning & Image segmentation. The author has an hindex of 8, co-authored 19 publications receiving 972 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: How far state-of-the-art deep learning methods can go at assessing CMRI, i.e., segmenting the myocardium and the two ventricles as well as classifying pathologies is measured, to open the door to highly accurate and fully automatic analysis of cardiac CMRI.
Abstract: Delineation of the left ventricular cavity, myocardium, and right ventricle from cardiac magnetic resonance images (multi-slice 2-D cine MRI) is a common clinical task to establish diagnosis. The automation of the corresponding tasks has thus been the subject of intense research over the past decades. In this paper, we introduce the “Automatic Cardiac Diagnosis Challenge” dataset (ACDC), the largest publicly available and fully annotated dataset for the purpose of cardiac MRI (CMR) assessment. The dataset contains data from 150 multi-equipments CMRI recordings with reference measurements and classification from two medical experts. The overarching objective of this paper is to measure how far state-of-the-art deep learning methods can go at assessing CMRI, i.e., segmenting the myocardium and the two ventricles as well as classifying pathologies. In the wake of the 2017 MICCAI-ACDC challenge, we report results from deep learning methods provided by nine research groups for the segmentation task and four groups for the classification task. Results show that the best methods faithfully reproduce the expert analysis, leading to a mean value of 0.97 correlation score for the automatic extraction of clinical indices and an accuracy of 0.96 for automatic diagnosis. These results clearly open the door to highly accurate and fully automatic analysis of cardiac CMRI. We also identify scenarios for which deep learning methods are still failing. Both the dataset and detailed results are publicly available online, while the platform will remain open for new submissions.

1,056 citations

Journal ArticleDOI
TL;DR: Without manual tuning, nnU-Net surpasses most specialised deep learning pipelines in 19 public international competitions and sets a new state of the art in the majority of the 49 tasks, demonstrating a vast hidden potential in the systematic adaptation of deep learning methods to different datasets.
Abstract: Biomedical imaging is a driver of scientific discovery and core component of medical care, currently stimulated by the field of deep learning. While semantic segmentation algorithms enable 3D image analysis and quantification in many applications, the design of respective specialised solutions is non-trivial and highly dependent on dataset properties and hardware conditions. We propose nnU-Net, a deep learning framework that condenses the current domain knowledge and autonomously takes the key decisions required to transfer a basic architecture to different datasets and segmentation tasks. Without manual tuning, nnU-Net surpasses most specialised deep learning pipelines in 19 public international competitions and sets a new state of the art in the majority of the 49 tasks. The results demonstrate a vast hidden potential in the systematic adaptation of deep learning methods to different datasets. We make nnU-Net publicly available as an open-source tool that can effectively be used out-of-the-box, rendering state of the art segmentation accessible to non-experts and catalyzing scientific progress as a framework for automated method design.

314 citations

Posted Content
17 Apr 2019
TL;DR: nU-Net ('no-new-Net'), a framework that automatically adapts itself to any given new dataset, is presented, which achieves state of the art performance on six well-established segmentation challenges.
Abstract: Fueled by the diversity of datasets, semantic segmentation is a popular subfield in medical image analysis with a vast number of new methods being proposed each year. This ever-growing jungle of methodologies, however, becomes increasingly impenetrable. At the same time, many proposed methods fail to generalize beyond the experiments they were demonstrated on, thus hampering the process of developing a segmentation algorithm on a new dataset. Here we present nnU-Net ('no-new-Net'), a framework that automatically adapts itself to any given new dataset. While this process was completely human-driven so far, we make a first attempt to automate necessary adaptations such as preprocessing, the exact patch size, batch size, and inference settings based on the properties of a given dataset. Remarkably, nnU-Net strips away the architectural bells and whistles that are typically proposed in the literature and relies on just a simple U-Net architecture embedded in a robust training scheme. Out of the box, nnU-Net achieves state of the art performance on six well-established segmentation challenges. Source code is available at https://github.com/MIC-DKFZ/nnunet.

147 citations

Book ChapterDOI
04 Oct 2020
TL;DR: The nnU-Net as mentioned in this paper achieved the first position in the BraTS 2020 challenge with Dice scores of 88.95, 85.06 and 82.03 and HD95 values of 8.498,17.337 and 17.805 for whole tumor, tumor core and enhancing tumor.
Abstract: We apply nnU-Net to the segmentation task of the BraTS 2020 challenge. The unmodified nnU-Net baseline configuration already achieves a respectable result. By incorporating BraTS-specific modifications regarding postprocessing, region-based training, a more aggressive data augmentation as well as several minor modifications to the nnU-Net pipeline we are able to improve its segmentation performance substantially. We furthermore re-implement the BraTS ranking scheme to determine which of our nnU-Net variants best fits the requirements imposed by it. Our method took the first place in the BraTS 2020 competition with Dice scores of 88.95, 85.06 and 82.03 and HD95 values of 8.498,17.337 and 17.805 for whole tumor, tumor core and enhancing tumor, respectively.

96 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: nnU-Net as mentioned in this paper is a deep learning-based segmentation method that automatically configures itself, including preprocessing, network architecture, training and post-processing for any new task.
Abstract: Biomedical imaging is a driver of scientific discovery and a core component of medical care and is being stimulated by the field of deep learning. While semantic segmentation algorithms enable image analysis and quantification in many applications, the design of respective specialized solutions is non-trivial and highly dependent on dataset properties and hardware conditions. We developed nnU-Net, a deep learning-based segmentation method that automatically configures itself, including preprocessing, network architecture, training and post-processing for any new task. The key design choices in this process are modeled as a set of fixed parameters, interdependent rules and empirical decisions. Without manual intervention, nnU-Net surpasses most existing approaches, including highly specialized solutions on 23 public datasets used in international biomedical segmentation competitions. We make nnU-Net publicly available as an out-of-the-box tool, rendering state-of-the-art segmentation accessible to a broad audience by requiring neither expert knowledge nor computing resources beyond standard network training.

2,040 citations

Journal ArticleDOI
TL;DR: Li et al. as discussed by the authors proposed a COVID-19 Lung Infection Segmentation Deep Network ( Inf-Net) to automatically identify infected regions from chest CT slices, where a parallel partial decoder is used to aggregate the high-level features and generate a global map.
Abstract: Coronavirus Disease 2019 (COVID-19) spread globally in early 2020, causing the world to face an existential health crisis. Automated detection of lung infections from computed tomography (CT) images offers a great potential to augment the traditional healthcare strategy for tackling COVID-19. However, segmenting infected regions from CT slices faces several challenges, including high variation in infection characteristics, and low intensity contrast between infections and normal tissues. Further, collecting a large amount of data is impractical within a short time period, inhibiting the training of a deep model. To address these challenges, a novel COVID-19 Lung Infection Segmentation Deep Network ( Inf-Net ) is proposed to automatically identify infected regions from chest CT slices. In our Inf-Net , a parallel partial decoder is used to aggregate the high-level features and generate a global map. Then, the implicit reverse attention and explicit edge-attention are utilized to model the boundaries and enhance the representations. Moreover, to alleviate the shortage of labeled data, we present a semi-supervised segmentation framework based on a randomly selected propagation strategy, which only requires a few labeled images and leverages primarily unlabeled data. Our semi-supervised framework can improve the learning ability and achieve a higher performance. Extensive experiments on our COVID-SemiSeg and real CT volumes demonstrate that the proposed Inf-Net outperforms most cutting-edge segmentation models and advances the state-of-the-art performance.

633 citations

Journal ArticleDOI
TL;DR: An automated analysis method based on a fully convolutional network achieves a performance on par with human experts in analysing CMR images and deriving clinically relevant measures.
Abstract: Cardiovascular resonance (CMR) imaging is a standard imaging modality for assessing cardiovascular diseases (CVDs), the leading cause of death globally. CMR enables accurate quantification of the cardiac chamber volume, ejection fraction and myocardial mass, providing information for diagnosis and monitoring of CVDs. However, for years, clinicians have been relying on manual approaches for CMR image analysis, which is time consuming and prone to subjective errors. It is a major clinical challenge to automatically derive quantitative and clinically relevant information from CMR images. Deep neural networks have shown a great potential in image pattern recognition and segmentation for a variety of tasks. Here we demonstrate an automated analysis method for CMR images, which is based on a fully convolutional network (FCN). The network is trained and evaluated on a large-scale dataset from the UK Biobank, consisting of 4,875 subjects with 93,500 pixelwise annotated images. The performance of the method has been evaluated using a number of technical metrics, including the Dice metric, mean contour distance and Hausdorff distance, as well as clinically relevant measures, including left ventricle (LV) end-diastolic volume (LVEDV) and end-systolic volume (LVESV), LV mass (LVM); right ventricle (RV) end-diastolic volume (RVEDV) and end-systolic volume (RVESV). By combining FCN with a large-scale annotated dataset, the proposed automated method achieves a high performance in segmenting the LV and RV on short-axis CMR images and the left atrium (LA) and right atrium (RA) on long-axis CMR images. On a short-axis image test set of 600 subjects, it achieves an average Dice metric of 0.94 for the LV cavity, 0.88 for the LV myocardium and 0.90 for the RV cavity. The mean absolute difference between automated measurement and manual measurement is 6.1 mL for LVEDV, 5.3 mL for LVESV, 6.9 gram for LVM, 8.5 mL for RVEDV and 7.2 mL for RVESV. On long-axis image test sets, the average Dice metric is 0.93 for the LA cavity (2-chamber view), 0.95 for the LA cavity (4-chamber view) and 0.96 for the RA cavity (4-chamber view). The performance is comparable to human inter-observer variability. We show that an automated method achieves a performance on par with human experts in analysing CMR images and deriving clinically relevant measures.

512 citations

Posted ContentDOI
22 Apr 2020-medRxiv
TL;DR: A novel COVID-19 Lung Infection Segmentation Deep Network (Inf-Net) is proposed to automatically identify infected regions from chest CT scans and outperforms most cutting-edge segmentation models and advances the state-of-the-art technology.
Abstract: Coronavirus Disease 2019 (COVID-19) spread globally in early 2020, causing the world to face an existential health crisis. Automated detection of lung infections from computed tomography (CT) images offers a great potential to augment the traditional healthcare strategy for tackling COVID-19. However, segmenting infected regions from CT slices faces several challenges, including high variation in infection characteristics, and low intensity contrast between infections and normal tissues. Further, collecting a large amount of data is impractical within a short time period, inhibiting the training of a deep model. To address these challenges, a novel COVID-19 Lung Infection Segmentation Deep Network (Inf-Net) is proposed to automatically identify infected regions from chest CT slices. In our Inf-Net, a parallel partial decoder is used to aggregate the high-level features and generate a global map. Then, the implicit reverse attention and explicit edge-attention are utilized to model the boundaries and enhance the representations. Moreover, to alleviate the shortage of labeled data, we present a semi-supervised segmentation framework based on a randomly selected propagation strategy, which only requires a few labeled images and leverages primarily unlabeled data. Our semi-supervised framework can improve the learning ability and achieve a higher performance. Extensive experiments on our COVID-SemiSeg and real CT volumes demonstrate that the proposed Inf-Net outperforms most cutting-edge segmentation models and advances the state-of-the-art performance.

354 citations