scispace - formally typeset
Search or ask a question
Author

Paul F. McMillan

Bio: Paul F. McMillan is an academic researcher from University College London. The author has contributed to research in topics: Raman spectroscopy & Infrared spectroscopy. The author has an hindex of 77, co-authored 454 publications receiving 22421 citations. Previous affiliations of Paul F. McMillan include École normale supérieure de Lyon & University of Alberta.


Papers
More filters
Journal ArticleDOI
TL;DR: The field of viscous liquid and glassy solid dynamics is reviewed by a process of posing the key questions that need to be answered, and then providing the best answers available to the authors and their advisors at this time as mentioned in this paper.
Abstract: The field of viscous liquid and glassy solid dynamics is reviewed by a process of posing the key questions that need to be answered, and then providing the best answers available to the authors and their advisors at this time. The subject is divided into four parts, three of them dealing with behavior in different domains of temperature with respect to the glass transition temperature, Tg , and a fourth dealing with ‘‘short time processes.’’ The first part tackles the high temperature regime T.Tg ,i n which the system is ergodic and the evolution of the viscous liquid toward the condition at Tg is in focus. The second part deals with the regime T;Tg , where the system is nonergodic except for very long annealing times, hence has time-dependent properties ~aging and annealing!. The third part discusses behavior when the system is completely frozen with respect to the primary relaxation process but in which secondary processes, particularly those responsible for ‘‘superionic’’ conductivity, and dopart mobility in amorphous silicon, remain active. In the fourth part we focus on the behavior of the system at the crossover between the low frequency vibrational components of the molecular motion and its high frequency relaxational components, paying particular attention to very recent developments in the short time dielectric response and the high Q mechanical response. © 2000 American Institute of Physics.@S0021-8979~00!02213-1#

1,958 citations

Journal ArticleDOI
TL;DR: In this paper, the mid-, near-, and far-infrared (IR) spectra of synthetic, single-phase calcium silicate hydrates (C-S-H) with Ca/Si ratios (C/S) of 0.41-1.2 were analyzed.
Abstract: The mid-, near-, and far-infrared (IR) spectra of synthetic, single-phase calcium silicate hydrates (C-S-H) with Ca/Si ratios (C/S) of 0.41–1.85, 1.4 nm tobermorite, 1.1 nm tobermorite, and jennite confirm the similarity of the structure of these phases and provide important new insight into their H2O and OH environments. The main mid-IR bands occur at 950–1100, 810–830, 660–670, and 440–450 cm−1, consistent with single silicate chain structures. For the C-S-H samples, the mid-IR bands change systematically with increasing C/S ratio, consistent with decreasing silicate polymerization and with an increasing content of jennite-like structural environments of C/S ratios >1.2. The 950–1100 cm−1 group of bands due to Si-O stretching shifts first to lower wave number due to decreasing polymerization and then to higher wave numbers, possibly reflecting an increase in jennite-like structural environments. Because IR spectroscopy is a local structural probe, the spatial distribution of the jennite-like domains cannot be determined from these data. A shoulder at ∼1200 cm−1 due to Si-O stretching vibrations in Q3 sites occurs only at C/S lessthan equal to 0.7. The 660–670 cm−1 band due to Si-O-Si bending broadens and decreases in intensity for samples with C/S > 0.88, consistent with depolymerization and decreased structural order. In the near-IR region, the combination band at 4567 cm−1 due to Si-OH stretching plus O-H stretching decreases in intensity and is absent at C/S greater than ∼1.2, indicating the absence of Si-OH linkages at C/S ratios greater than this. The primary Si-OH band at 3740 cm-1 decreases in a similar way. In the far-IR region, C-S-H samples with C/S ratio greater than ∼1.3 have increased absorption intensity at ∼300 cm−1, indicating the presence of CaOH environments, even though portlandite cannot be detected by X-ray diffraction for C/S ratios <1.5. These results, in combination with our previous NMR and Raman spectroscopic studies of the same samples, provide the basis for a more complete structural model for this type of C-S-H, which is described.

1,034 citations

Journal Article
TL;DR: Raman spectroscopy studies of alkali and alkaline earth silicate glasses and melts are reviewed, and the major Raman bands observed are summarized in this article, where a number of vibrational calculations have been carried out to address this problem.
Abstract: Raman spectroscopy studies of alkali and alkaline earth silicate glasses and melts are reviewed, and the major Raman bands observed are summarized. To realize the full potential of Raman spectroscopy will require a detailed understanding of their vibrational properties in relation to structure. A number of vibrational calculations have been carried out to address this problem. These are briefly summarized, and some limitations of the method are noted. Systematic variations in bulk properties are examined for viscosity and the immiscibility behavior.

862 citations

Journal ArticleDOI
TL;DR: Innovation in high-pressure research is examined that might be harnessed to develop new materials for technological applications, including condensed rare gases, and ionic compounds such as CsI.
Abstract: High-pressure synthesis on an industrial scale is applied to obtain synthetic diamonds and cubic boron nitride (c-BN), which are the superhard abrasives of choice for cutting and shaping hard metals and ceramics. Recently, high-pressure science has undergone a renaissance, with novel techniques and instrumentation permitting entirely new classes of high-pressure experiments. For example, superconducting behaviour was previously known for only a few elements and compounds. Under high-pressure conditions, the 'superconducting periodic table' now extends to all classes of the elements, including condensed rare gases, and ionic compounds such as CsI. Another surprising result is the newly discovered solid-state chemistry of light-element 'gas' molecules such as CO2, N2 and N2O. These react to give polymerized covalently bonded or ionic mineral structures under conditions of high pressure and temperature: the new solids are potentially recoverable to ambient conditions. Here we examine innovations in high-pressure research that might be harnessed to develop new materials for technological applications.

469 citations

Journal ArticleDOI
TL;DR: In this article, the UV-vis spectra exhibited a strong π-π* transition near 400 nm with a semiconductor-like band edge extending into the visible range, which is assigned to n−π* electronic transitions involving the N lone pairs.
Abstract: Graphitic carbon nitride compounds were prepared by thermal treatment of C–N–H precursor mixtures (melamine C3N6H9, dicyandiamide C2N4H4). This led to solids based on polymerized heptazine or triazine ring units linked by −N═ or −NH– groups. The H content decreased, and the C/N ratio varied between 0.59 and 0.70 with preparation temperatures between 550 and 650 °C due to increased layer condensation. The UV–vis spectra exhibited a strong π–π* transition near 400 nm with a semiconductor-like band edge extending into the visible range. Samples synthesized at 600–650 °C showed an additional absorption near 500 nm that is assigned to n−π* electronic transitions involving the N lone pairs. These are forbidden for planar symmetric s-triazine or heptazine structures but become allowed as increased condensation causes distortion of the polymeric units. Photocatalysis studies showed there was no correlation between the increased visible absorption due to this feature and H2 evolution from methanol used for the ano...

384 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: It is anticipated that this review can stimulate a new research doorway to facilitate the next generation of g-C3N4-based photocatalysts with ameliorated performances by harnessing the outstanding structural, electronic, and optical properties for the development of a sustainable future without environmental detriment.
Abstract: As a fascinating conjugated polymer, graphitic carbon nitride (g-C3N4) has become a new research hotspot and drawn broad interdisciplinary attention as a metal-free and visible-light-responsive photocatalyst in the arena of solar energy conversion and environmental remediation. This is due to its appealing electronic band structure, high physicochemical stability, and “earth-abundant” nature. This critical review summarizes a panorama of the latest progress related to the design and construction of pristine g-C3N4 and g-C3N4-based nanocomposites, including (1) nanoarchitecture design of bare g-C3N4, such as hard and soft templating approaches, supramolecular preorganization assembly, exfoliation, and template-free synthesis routes, (2) functionalization of g-C3N4 at an atomic level (elemental doping) and molecular level (copolymerization), and (3) modification of g-C3N4 with well-matched energy levels of another semiconductor or a metal as a cocatalyst to form heterojunction nanostructures. The constructi...

5,054 citations

Journal ArticleDOI
31 Mar 1995-Science
TL;DR: The onset of a sharp change in ddT( is the Debye-Waller factor and T is temperature) in proteins, which is controversially indentified with the glass transition in liquids, is shown to be general for glass formers and observable in computer simulations of strong and fragile ionic liquids, where it proves to be close to the experimental glass transition temperature.
Abstract: Glasses can be formed by many routes. In some cases, distinct polyamorphic forms are found. The normal mode of glass formation is cooling of a viscous liquid. Liquid behavior during cooling is classified between "strong" and "fragile," and the three canonical characteristics of relaxing liquids are correlated through the fragility. Strong liquids become fragile liquids on compression. In some cases, such conversions occur during cooling by a weak first-order transition. This behavior can be related to the polymorphism in a glass state through a recent simple modification of the van der Waals model for tetrahedrally bonded liquids. The sudden loss of some liquid degrees of freedom through such first-order transitions is suggestive of the polyamorphic transition between native and denatured hydrated proteins, which can be interpreted as single-chain glass-forming polymers plasticized by water and cross-linked by hydrogen bonds. The onset of a sharp change in d dT( is the Debye-Waller factor and T is temperature) in proteins, which is controversially indentified with the glass transition in liquids, is shown to be general for glass formers and observable in computer simulations of strong and fragile ionic liquids, where it proves to be close to the experimental glass transition temperature. The latter may originate in strong anharmonicity in modes ("bosons"), which permits the system to access multiple minima of its configuration space. These modes, the Kauzmann temperature T(K), and the fragility of the liquid, may thus be connected.

4,016 citations

Journal ArticleDOI
08 Mar 2001-Nature
TL;DR: Current theoretical knowledge of the manner in which intermolecular forces give rise to complex behaviour in supercooled liquids and glasses is discussed.
Abstract: Glasses are disordered materials that lack the periodicity of crystals but behave mechanically like solids. The most common way of making a glass is by cooling a viscous liquid fast enough to avoid crystallization. Although this route to the vitreous state-supercooling-has been known for millennia, the molecular processes by which liquids acquire amorphous rigidity upon cooling are not fully understood. Here we discuss current theoretical knowledge of the manner in which intermolecular forces give rise to complex behaviour in supercooled liquids and glasses. An intriguing aspect of this behaviour is the apparent connection between dynamics and thermodynamics. The multidimensional potential energy surface as a function of particle coordinates (the energy landscape) offers a convenient viewpoint for the analysis and interpretation of supercooling and glass-formation phenomena. That much of this analysis is at present largely qualitative reflects the fact that precise computations of how viscous liquids sample their landscape have become possible only recently.

3,736 citations