scispace - formally typeset
Search or ask a question
Author

Paul Forsythe

Bio: Paul Forsythe is an academic researcher from McMaster University. The author has contributed to research in topics: Mast cell & Gut–brain axis. The author has an hindex of 44, co-authored 121 publications receiving 9013 citations. Previous affiliations of Paul Forsythe include St. Joseph's Healthcare Hamilton & McMaster-Carr.


Papers
More filters
Journal ArticleDOI
TL;DR: Chronic treatment with L. rhamnosus induced region-dependent alterations in GABAB1b mRNA in the brain with increases in cortical regions and concomitant reductions in expression in the hippocampus, amygdala, and locus coeruleus, in comparison with control-fed mice, highlighting the important role of bacteria in the bidirectional communication of the gut–brain axis.
Abstract: There is increasing, but largely indirect, evidence pointing to an effect of commensal gut microbiota on the central nervous system (CNS). However, it is unknown whether lactic acid bacteria such as Lactobacillus rhamnosus could have a direct effect on neurotransmitter receptors in the CNS in normal, healthy animals. GABA is the main CNS inhibitory neurotransmitter and is significantly involved in regulating many physiological and psychological processes. Alterations in central GABA receptor expression are implicated in the pathogenesis of anxiety and depression, which are highly comorbid with functional bowel disorders. In this work, we show that chronic treatment with L. rhamnosus (JB-1) induced region-dependent alterations in GABAB1b mRNA in the brain with increases in cortical regions (cingulate and prelimbic) and concomitant reductions in expression in the hippocampus, amygdala, and locus coeruleus, in comparison with control-fed mice. In addition, L. rhamnosus (JB-1) reduced GABAAα2 mRNA expression in the prefrontal cortex and amygdala, but increased GABAAα2 in the hippocampus. Importantly, L. rhamnosus (JB-1) reduced stress-induced corticosterone and anxiety- and depression-related behavior. Moreover, the neurochemical and behavioral effects were not found in vagotomized mice, identifying the vagus as a major modulatory constitutive communication pathway between the bacteria exposed to the gut and the brain. Together, these findings highlight the important role of bacteria in the bidirectional communication of the gut–brain axis and suggest that certain organisms may prove to be useful therapeutic adjuncts in stress-related disorders such as anxiety and depression.

2,713 citations

Book ChapterDOI
TL;DR: Understanding the induction and transmission of signals in the vagus nerve may have important implications for the development of microbial-or nutrition based therapeutic strategies for mood disorders.
Abstract: There is now strong evidence from animal studies that gut microorganism can activate the vagus nerve and that such activation plays a critical role in mediating effects on the brain and behaviour. The vagus appears to differentiate between non-pathogenic and potentially pathogenic bacteria even in the absence of overt inflammation and vagal pathways mediate signals that can induce both anxiogenic and anxiolytic effects, depending on the nature of the stimulus. Certain vagal signals from the gut can instigate an anti-inflammatory reflex with afferent signals to the brain activating an efferent response, releasing mediators including acetylcholine that, through an interaction with immune cells, attenuates inflammation. This immunomodulatory role of the vagus nerve may also have consequences for modulation of brain function and mood.

385 citations

Journal ArticleDOI
TL;DR: There are rapidly coalescing clusters of evidence which point to the possibility that variations in the composition of gut microbes may be associated with changes in the normal functioning of the nervous system, and the concept should be explored further to increase the understanding of mood disorders, and possibly even uncover missing links to a number of co-morbid medical diseases.
Abstract: Evidence is accumulating to suggest that gut microbes (microbiota) may be involved in neural development and function, both peripherally in the enteric nervous system and centrally in the brain. There is an increasing and intense current interest in the role that gut bacteria play in maintaining the health of the host. Altogether the mass of intestinal bacteria represents a virtual inner organ with 100 times the total genetic material contained in all the cells in the human body. Surprisingly, the characterization of this extraordinarily diverse population is only just beginning, since some 60% of these microbes have never been cultured. Commensal organisms live in a state of harmonious symbiosis with each other and their host, however, a disordered balance amongst gut microbes is now thought to be an associated or even causal factor for chronic medical conditions as varied as obesity and inflammatory bowel diseases. While evidence is still limited in psychiatric illnesses, there are rapidly coalescing clusters of evidence which point to the possibility that variations in the composition of gut microbes may be associated with changes in the normal functioning of the nervous system. This review focuses on these data and suggests that the concept should be explored further to increase our understanding of mood disorders, and possibly even uncover missing links to a number of co-morbid medical diseases.

385 citations

Journal ArticleDOI
TL;DR: A role for nonantigen-specific CD4(+)CD25(+)Foxp3(+) regulatory T cells in attenuating the allergic airway response following oral treatment with L. reuteri is found and may have therapeutic potential in controlling the Th2 bias observed in atopic individuals.
Abstract: Rationale: We have previously demonstrated that oral treatment with live Lactobacillus reuteri can attenuate major characteristics of the asthmatic response in a mouse model of allergic airway inflammation. However, the mechanisms underlying these effects remain to be determined.Objectives: We tested the hypothesis that regulatory T cells play a major role in mediating L. reuteri–induced attenuation of the allergic airway response.Methods: BALB/c mice were treated daily with L. reuteri by gavage. Flourescent-activated cell sorter analysis was used to determine CD4+CD25+Foxp3+T cell populations in spleens following treatment with L. reuteri or vehicle control. Cell proliferation assays were performed on immunomagnetic bead separated CD4+CD25+ and CD4+CD25− T cells. CD4+CD25+ T cells isolated from, ovalbumin naive, L. reuteri treated mice were transferred into ovalbumin-sensitized mice. Following antigen challenge the airway responsiveness, inflammatory cell influx and cytokine levels in bronchoalveolar lav...

359 citations

Journal Article
TL;DR: It is established that RANTES is a chemotactic and activating factor for eosinophils, unlike IL-3, who did not affect the survival of eos in a 4-day culture system.
Abstract: RANTES is a member of the 8-kDa cytokine family that has been shown to possess chemotactic activity for monocytes and CD4 T cells. In this study, we investigated whether RANTES could affect eosinophil chemotaxis and function. Peripheral blood eosinophils from blood donors were isolated on Percoll gradients to > 98% purity and then used for chemotaxis, flow cytometry, eosinophil cationic protein release assay, and survival assay. We found that RANTES is chemotactic for eosinophils at 10(-9) to 10(-8) M concentrations. RANTES elicited 65% of the chemotactic response to 10(-7) M platelet-activating factor in all experiments. The mechanism of chemotaxis was investigated by studying the expression of adhesion molecules on eosinophils by flow cytometry. We found that RANTES up-regulated the expression of CD11b/CD18 on eosinophils in a dose-dependent manner. In another set of experiments, purified eosinophils incubated with various concentrations of RANTES released eosinophil cationic protein as measured by a RIA. We also investigated the effect of RANTES on eosinophil density. Leukocytes were incubated in the presence or absence of RANTES, and the distribution of eosinophils on discontinuous Percoll gradients was then examined. We found that eosinophils became hypodense (< 1.085) when incubated in RANTES. However, unlike IL-3, RANTES did not affect the survival of eosinophils in a 4-day culture system. Thus, we established that RANTES is a chemotactic and activating factor for eosinophils.

344 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Findings indicating that developmental aspects of the adaptive immune system are influenced by bacterial colonization of the gut are discussed, and the possibility that the mammalian immune system, which seems to be designed to control microorganisms, is in fact controlled by microorganisms is raised.
Abstract: Immunological dysregulation is the cause of many non-infectious human diseases such as autoimmunity, allergy and cancer. The gastrointestinal tract is the primary site of interaction between the host immune system and microorganisms, both symbiotic and pathogenic. In this Review we discuss findings indicating that developmental aspects of the adaptive immune system are influenced by bacterial colonization of the gut. We also highlight the molecular pathways that mediate host–symbiont interactions that regulate proper immune function. Finally, we present recent evidence to support that disturbances in the bacterial microbiota result in dysregulation of adaptive immune cells, and this may underlie disorders such as inflammatory bowel disease. This raises the possibility that the mammalian immune system, which seems to be designed to control microorganisms, is in fact controlled by microorganisms.

4,079 citations

Journal ArticleDOI
TL;DR: This systematic review and meta-analyses confirmed the findings of a previous study published in “Rhinitis and Asthma: Causes and Prevention, 2nd Ed.” (2015) as well as new findings of “Mechanisms of Respiratory Disease and Allergology,” which confirmed the role of EMTs in the development of these diseases.
Abstract: Authors Jan L. Brozek, MD, PhD – Department of Clinical Epidemiology & Biostatistics and Medicine, McMaster University, Hamilton, Canada Jean Bousquet, MD, PhD – Service des Maladies Respiratoires, Hopital Arnaud de Villeneuve, Montpellier, France, INSERM, CESP U1018, Respiratory and Environmental Epidemiology Team, France, and WHO Collaborating Center for Rhinitis and Asthma Carlos E. Baena-Cagnani, MD – Faculty of Medicine, Catholic University of Cordoba, Cordoba, Argentina Sergio Bonini, MD – Institute of Neurobiology and Molecular Medicine – CNR, Rome, Italy and Department of Medicine, Second University of Naples, Naples, Italy G. Walter Canonica, MD – Allergy & Respiratory Diseases, DIMI, Department of Internal Medicine, University of Genoa, Genoa, Italy Thomas B. Casale, MD – Division of Allergy and Immunology, Department of Medicine, Creighton University, Omaha, Nebraska, USA Roy Gerth van Wijk, MD, PhD – Section of Allergology, Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, the Netherlands Ken Ohta, MD, PhD – Division of Respiratory Medicine and Allergology, Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan Torsten Zuberbier, MD – Department of Dermatology and Allergy, Charite Universitatsmedizin Berlin, Berlin, Germany Holger J. Schunemann, MD, PhD, MSc – Department of Clinical Epidemiology & Biostatistics and Medicine, McMaster University, Hamilton, Canada

3,368 citations

Journal ArticleDOI
27 Mar 2014-Cell
TL;DR: In high-income countries, overuse of antibiotics, changes in diet, and elimination of constitutive partners, such as nematodes, may have selected for a microbiota that lack the resilience and diversity required to establish balanced immune responses.

3,257 citations

Journal ArticleDOI
21 Jan 2011-Science
TL;DR: Oral inoculation of Clostridium during the early life of conventionally reared mice resulted in resistance to colitis and systemic immunoglobulin E responses in adult mice, suggesting a new therapeutic approach to autoimmunity and allergy.
Abstract: CD4+ T regulatory cells (Tregs), which express the Foxp3 transcription factor, play a critical role in the maintenance of immune homeostasis. Here, we show that in mice, Tregs were most abundant in the colonic mucosa. The spore-forming component of indigenous intestinal microbiota, particularly clusters IV and XIVa of the genus Clostridium, promoted Treg cell accumulation. Colonization of mice by a defined mix of Clostridium strains provided an environment rich in transforming growth factor–β and affected Foxp3+ Treg number and function in the colon. Oral inoculation of Clostridium during the early life of conventionally reared mice resulted in resistance to colitis and systemic immunoglobulin E responses in adult mice, suggesting a new therapeutic approach to autoimmunity and allergy.

3,096 citations