scispace - formally typeset
Search or ask a question
Author

Paul G. Kwiat

Bio: Paul G. Kwiat is an academic researcher from University of Illinois at Urbana–Champaign. The author has contributed to research in topics: Photon & Quantum entanglement. The author has an hindex of 67, co-authored 325 publications receiving 22699 citations. Previous affiliations of Paul G. Kwiat include University of California, Berkeley & Los Alamos National Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: Type-II noncollinear phase matching in parametric down conversion produces true entanglement: No part of the wave function must be discarded, in contrast to previous schemes.
Abstract: We report on a high-intensity source of polarization-entangled photon pairs with high momentum definition. Type-II noncollinear phase matching in parametric down conversion produces true entanglement: No part of the wave function must be discarded, in contrast to previous schemes. With two-photon fringe visibilities in excess of 97%, we demonstrated a violation of Bell's inequality by over 100 standard deviations in less than 5 min. The new source allowed ready preparation of all four of the EPR-Bell states.

2,639 citations

Journal ArticleDOI
TL;DR: In this paper, the theory underpinning the measurement of density matrices of a pair of quantum two-level systems is described, and a detailed error analysis is presented, allowing errors in quantities derived from the density matrix, such as the entropy or entanglement of formation.
Abstract: We describe in detail the theory underpinning the measurement of density matrices of a pair of quantum two-level systems ~‘‘qubits’’ !. Our particular emphasis is on qubits realized by the two polarization degrees of freedom of a pair of entangled photons generated in a down-conversion experiment; however, the discussion applies in general, regardless of the actual physical realization. Two techniques are discussed, namely, a tomographic reconstruction ~in which the density matrix is linearly related to a set of measured quantities ! and a maximum likelihood technique which requires numerical optimization ~but has the advantage of producing density matrices that are always non-negative definite!. In addition, a detailed error analysis is presented, allowing errors in quantities derived from the density matrix, such as the entropy or entanglement of formation, to be estimated. Examples based on down-conversion experiments are used to illustrate our results.

1,838 citations

Journal ArticleDOI
08 Feb 2008-Science
TL;DR: The spin-dependent displacement perpendicular to the refractive index gradient for photons passing through an air-glass interface is detected, indicating the universality of the effect for particles of different nature.
Abstract: We have detected a spin-dependent displacement perpendicular to the refractive index gradient for photons passing through an air-glass interface. The effect is the photonic version of the spin Hall effect in electronic systems, indicating the universality of the effect for particles of different nature. Treating the effect as a weak measurement of the spin projection of the photons, we used a preselection and postselection technique on the spin state to enhance the original displacement by nearly four orders of magnitude, attaining sensitivity to displacements of ∼1 angstrom. The spin Hall effect can be used for manipulating photonic angular momentum states, and the measurement technique holds promise for precision metrology.

1,522 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a loophole-free violation of local realism using entangled photon pairs, ensuring that all relevant events in their Bell test are spacelike separated by placing the parties far enough apart and by using fast random number generators and high-speed polarization measurements.
Abstract: We present a loophole-free violation of local realism using entangled photon pairs. We ensure that all relevant events in our Bell test are spacelike separated by placing the parties far enough apart and by using fast random number generators and high-speed polarization measurements. A high-quality polarization-entangled source of photons, combined with high-efficiency, low-noise, single-photon detectors, allows us to make measurements without requiring any fair-sampling assumptions. Using a hypothesis test, we compute p values as small as 5.9×10^{-9} for our Bell violation while maintaining the spacelike separation of our events. We estimate the degree to which a local realistic system could predict our measurement choices. Accounting for this predictability, our smallest adjusted p value is 2.3×10^{-7}. We therefore reject the hypothesis that local realism governs our experiment.

1,201 citations

Journal ArticleDOI
TL;DR: It is demonstrated experimentally that one can transmit one of three messages, i.e., 1 {open_ quote}{open_quote}trit{close_quote}{close_ quote} {approx_equal}1.58 bit, by manipulating only one of two entangled particles.
Abstract: Classically, sending more than one bit of information requires manipulation of more than one two-state particle. We demonstrate experimentally that one can transmit one of three messages, i.e., 1 ``trit'' $\ensuremath{\approx}1.58\mathrm{bit}$, by manipulating only one of two entangled particles. The increased channel capacity is proven by transmitting ASCII characters in five trits instead of the usual 8 bits.

1,116 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

01 Dec 2010
TL;DR: This chapter discusses quantum information theory, public-key cryptography and the RSA cryptosystem, and the proof of Lieb's theorem.
Abstract: Part I. Fundamental Concepts: 1. Introduction and overview 2. Introduction to quantum mechanics 3. Introduction to computer science Part II. Quantum Computation: 4. Quantum circuits 5. The quantum Fourier transform and its application 6. Quantum search algorithms 7. Quantum computers: physical realization Part III. Quantum Information: 8. Quantum noise and quantum operations 9. Distance measures for quantum information 10. Quantum error-correction 11. Entropy and information 12. Quantum information theory Appendices References Index.

14,825 citations

Journal ArticleDOI
TL;DR: In this article, the basic aspects of entanglement including its characterization, detection, distillation, and quantification are discussed, and a basic role of entonglement in quantum communication within distant labs paradigm is discussed.
Abstract: All our former experience with application of quantum theory seems to say: {\it what is predicted by quantum formalism must occur in laboratory} But the essence of quantum formalism - entanglement, recognized by Einstein, Podolsky, Rosen and Schr\"odinger - waited over 70 years to enter to laboratories as a new resource as real as energy This holistic property of compound quantum systems, which involves nonclassical correlations between subsystems, is a potential for many quantum processes, including ``canonical'' ones: quantum cryptography, quantum teleportation and dense coding However, it appeared that this new resource is very complex and difficult to detect Being usually fragile to environment, it is robust against conceptual and mathematical tools, the task of which is to decipher its rich structure This article reviews basic aspects of entanglement including its characterization, detection, distillation and quantifying In particular, the authors discuss various manifestations of entanglement via Bell inequalities, entropic inequalities, entanglement witnesses, quantum cryptography and point out some interrelations They also discuss a basic role of entanglement in quantum communication within distant labs paradigm and stress some peculiarities such as irreversibility of entanglement manipulations including its extremal form - bound entanglement phenomenon A basic role of entanglement witnesses in detection of entanglement is emphasized

6,980 citations

Journal ArticleDOI
TL;DR: The author revealed that quantum teleportation as “Quantum one-time-pad” had changed from a “classical teleportation” to an “optical amplification, privacy amplification and quantum secret growing” situation.
Abstract: Quantum cryptography could well be the first application of quantum mechanics at the individual quanta level. The very fast progress in both theory and experiments over the recent years are reviewed, with emphasis on open questions and technological issues.

6,949 citations