scispace - formally typeset
Search or ask a question
Author

Paul J. Besl

Other affiliations: University of Michigan
Bio: Paul J. Besl is an academic researcher from General Motors. The author has contributed to research in topics: Image processing & Image segmentation. The author has an hindex of 18, co-authored 26 publications receiving 22281 citations. Previous affiliations of Paul J. Besl include University of Michigan.

Papers
More filters
Journal ArticleDOI
Paul J. Besl1, H.D. McKay1
TL;DR: In this paper, the authors describe a general-purpose representation-independent method for the accurate and computationally efficient registration of 3D shapes including free-form curves and surfaces, based on the iterative closest point (ICP) algorithm, which requires only a procedure to find the closest point on a geometric entity to a given point.
Abstract: The authors describe a general-purpose, representation-independent method for the accurate and computationally efficient registration of 3-D shapes including free-form curves and surfaces. The method handles the full six degrees of freedom and is based on the iterative closest point (ICP) algorithm, which requires only a procedure to find the closest point on a geometric entity to a given point. The ICP algorithm always converges monotonically to the nearest local minimum of a mean-square distance metric, and the rate of convergence is rapid during the first few iterations. Therefore, given an adequate set of initial rotations and translations for a particular class of objects with a certain level of 'shape complexity', one can globally minimize the mean-square distance metric over all six degrees of freedom by testing each initial registration. One important application of this method is to register sensed data from unfixtured rigid objects with an ideal geometric model, prior to shape inspection. Experimental results show the capabilities of the registration algorithm on point sets, curves, and surfaces. >

17,598 citations

Proceedings ArticleDOI
30 Apr 1992
TL;DR: In this paper, the authors describe a general purpose representation independent method for the accurate and computationally efficient registration of 3D shapes including free-form curves and surfaces, based on the iterative closest point (ICP) algorithm, which requires only a procedure to find the closest point on a geometric entity to a given point.
Abstract: This paper describes a general purpose, representation independent method for the accurate and computationally efficient registration of 3-D shapes including free-form curves and surfaces. The method handles the full six-degrees of freedom and is based on the iterative closest point (ICP) algorithm, which requires only a procedure to find the closest point on a geometric entity to a given point. The ICP algorithm always converges monotonically to the nearest local minimum of a mean-square distance metric, and experience shows that the rate of convergence is rapid during the first few iterations. Therefore, given an adequate set of initial rotations and translations for a particular class of objects with a certain level of 'shape complexity', one can globally minimize the mean-square distance metric over all six degrees of freedom by testing each initial registration. For examples, a given 'model' shape and a sensed 'data' shape that represents a major portion of the model shape can be registered in minutes by testing one initial translation and a relatively small set of rotations to allow for the given level of model complexity. One important application of this method is to register sensed data from unfixtured rigid objects with an ideal geometric model prior to shape inspection. The described method is also useful for deciding fundamental issues such as the congruence (shape equivalence) of different geometric representations as well as for estimating the motion between point sets where the correspondences are not known. Experimental results show the capabilities of the registration algorithm on point sets, curves, and surfaces.

2,377 citations

Journal ArticleDOI
TL;DR: A piecewise-smooth surface model for image data that possesses surface coherence properties is used to develop an algorithm that simultaneously segments a large class of images into regions of arbitrary shape and approximates image data with bivariate functions so that it is possible to compute a complete, noiseless image reconstruction based on the extracted functions and regions.
Abstract: The solution of the segmentation problem requires a mechanism for partitioning the image array into low-level entities based on a model of the underlying image structure. A piecewise-smooth surface model for image data that possesses surface coherence properties is used to develop an algorithm that simultaneously segments a large class of images into regions of arbitrary shape and approximates image data with bivariate functions so that it is possible to compute a complete, noiseless image reconstruction based on the extracted functions and regions. Surface curvature sign labeling provides an initial coarse image segmentation, which is refined by an iterative region-growing method based on variable-order surface fitting. Experimental results show the algorithm's performance on six range images and three intensity images. >

1,151 citations

Journal ArticleDOI
TL;DR: In this paper, a precise definition of the 3D object recognition problem is proposed, and basic concepts associated with this problem are discussed, and a review of relevant literature is provided.
Abstract: A general-purpose computer vision system must be capable of recognizing three-dimensional (3-D) objects. This paper proposes a precise definition of the 3-D object recognition problem, discusses basic concepts associated with this problem, and reviews the relevant literature. Because range images (or depth maps) are often used as sensor input instead of intensity images, techniques for obtaining, processing, and characterizing range data are also surveyed.

1,146 citations

Journal ArticleDOI
Paul J. Besl1
01 Dec 1988
TL;DR: In this survey, the relative capabilities of different sensors and sensing methods are evaluated using a figure of merit based on range accuracy, depth of field, and image acquisition time.
Abstract: Active, optical range imaging systems collect three-dimensional coordinate data from object surfaces. These systems can be useful in a wide variety of automation applications, including shape acquisition, bin picking, assembly, inspection, gauging, robot navigation, medical diagnosis, cartography, and military tasks. The range-imaging sensors in such systems are unique imaging devices in that the image data points explicitly represent scene surface geometry in a sampled form. At least six different optical principles have been used to actively obtain range images: (1) radar, (2) triangulation, (3) moire, (4) holographic interferometry, (5) lens focusing, and (6) diffraction. The relative capabilities of different sensors and sensing methods are evaluated using a figure of merit based on range accuracy, depth of field, and image acquisition time.

670 citations


Cited by
More filters
Journal ArticleDOI
Paul J. Besl1, H.D. McKay1
TL;DR: In this paper, the authors describe a general-purpose representation-independent method for the accurate and computationally efficient registration of 3D shapes including free-form curves and surfaces, based on the iterative closest point (ICP) algorithm, which requires only a procedure to find the closest point on a geometric entity to a given point.
Abstract: The authors describe a general-purpose, representation-independent method for the accurate and computationally efficient registration of 3-D shapes including free-form curves and surfaces. The method handles the full six degrees of freedom and is based on the iterative closest point (ICP) algorithm, which requires only a procedure to find the closest point on a geometric entity to a given point. The ICP algorithm always converges monotonically to the nearest local minimum of a mean-square distance metric, and the rate of convergence is rapid during the first few iterations. Therefore, given an adequate set of initial rotations and translations for a particular class of objects with a certain level of 'shape complexity', one can globally minimize the mean-square distance metric over all six degrees of freedom by testing each initial registration. One important application of this method is to register sensed data from unfixtured rigid objects with an ideal geometric model, prior to shape inspection. Experimental results show the capabilities of the registration algorithm on point sets, curves, and surfaces. >

17,598 citations

Journal ArticleDOI
TL;DR: An overview of pattern clustering methods from a statistical pattern recognition perspective is presented, with a goal of providing useful advice and references to fundamental concepts accessible to the broad community of clustering practitioners.
Abstract: Clustering is the unsupervised classification of patterns (observations, data items, or feature vectors) into groups (clusters). The clustering problem has been addressed in many contexts and by researchers in many disciplines; this reflects its broad appeal and usefulness as one of the steps in exploratory data analysis. However, clustering is a difficult problem combinatorially, and differences in assumptions and contexts in different communities has made the transfer of useful generic concepts and methodologies slow to occur. This paper presents an overview of pattern clustering methods from a statistical pattern recognition perspective, with a goal of providing useful advice and references to fundamental concepts accessible to the broad community of clustering practitioners. We present a taxonomy of clustering techniques, and identify cross-cutting themes and recent advances. We also describe some important applications of clustering algorithms such as image segmentation, object recognition, and information retrieval.

14,054 citations

Journal ArticleDOI
TL;DR: A review of recent as well as classic image registration methods to provide a comprehensive reference source for the researchers involved in image registration, regardless of particular application areas.

6,842 citations

Journal ArticleDOI
TL;DR: Recognition-by-components (RBC) provides a principled account of the heretofore undecided relation between the classic principles of perceptual organization and pattern recognition.
Abstract: The perceptual recognition of objects is conceptualized to be a process in which the image of the input is segmented at regions of deep concavity into an arrangement of simple geometric components, such as blocks, cylinders, wedges, and cones. The fundamental assumption of the proposed theory, recognition-by-components (RBC), is that a modest set of generalized-cone components, called geons (N £ 36), can be derived from contrasts of five readily detectable properties of edges in a two-dimensiona l image: curvature, collinearity, symmetry, parallelism, and cotermination. The detection of these properties is generally invariant over viewing position an$ image quality and consequently allows robust object perception when the image is projected from a novel viewpoint or is degraded. RBC thus provides a principled account of the heretofore undecided relation between the classic principles of perceptual organization and pattern recognition: The constraints toward regularization (Pragnanz) characterize not the complete object but the object's components. Representational power derives from an allowance of free combinations of the geons. A Principle of Componential Recovery can account for the major phenomena of object recognition: If an arrangement of two or three geons can be recovered from the input, objects can be quickly recognized even when they are occluded, novel, rotated in depth, or extensively degraded. The results from experiments on the perception of briefly presented pictures by human observers provide empirical support for the theory. Any single object can project an infinity of image configurations to the retina. The orientation of the object to the viewer can vary continuously, each giving rise to a different two-dimensional projection. The object can be occluded by other objects or texture fields, as when viewed behind foliage. The object need not be presented as a full-colored textured image but instead can be a simplified line drawing. Moreover, the object can even be missing some of its parts or be a novel exemplar of its particular category. But it is only with rare exceptions that an image fails to be rapidly and readily classified, either as an instance of a familiar object category or as an instance that cannot be so classified (itself a form of classification).

5,464 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: This work proposes to represent a geometric 3D shape as a probability distribution of binary variables on a 3D voxel grid, using a Convolutional Deep Belief Network, and shows that this 3D deep representation enables significant performance improvement over the-state-of-the-arts in a variety of tasks.
Abstract: 3D shape is a crucial but heavily underutilized cue in today's computer vision systems, mostly due to the lack of a good generic shape representation. With the recent availability of inexpensive 2.5D depth sensors (e.g. Microsoft Kinect), it is becoming increasingly important to have a powerful 3D shape representation in the loop. Apart from category recognition, recovering full 3D shapes from view-based 2.5D depth maps is also a critical part of visual understanding. To this end, we propose to represent a geometric 3D shape as a probability distribution of binary variables on a 3D voxel grid, using a Convolutional Deep Belief Network. Our model, 3D ShapeNets, learns the distribution of complex 3D shapes across different object categories and arbitrary poses from raw CAD data, and discovers hierarchical compositional part representation automatically. It naturally supports joint object recognition and shape completion from 2.5D depth maps, and it enables active object recognition through view planning. To train our 3D deep learning model, we construct ModelNet - a large-scale 3D CAD model dataset. Extensive experiments show that our 3D deep representation enables significant performance improvement over the-state-of-the-arts in a variety of tasks.

4,266 citations