scispace - formally typeset
Search or ask a question
Author

Paul J. Crutzen

Bio: Paul J. Crutzen is an academic researcher from Max Planck Society. The author has contributed to research in topics: Stratosphere & Ozone. The author has an hindex of 130, co-authored 461 publications receiving 80651 citations. Previous affiliations of Paul J. Crutzen include University of Oxford & National Oceanic and Atmospheric Administration.


Papers
More filters
Journal ArticleDOI
23 Sep 2009-Nature
TL;DR: Identifying and quantifying planetary boundaries that must not be transgressed could help prevent human activities from causing unacceptable environmental change, argue Johan Rockstrom and colleagues.
Abstract: Identifying and quantifying planetary boundaries that must not be transgressed could help prevent human activities from causing unacceptable environmental change, argue Johan Rockstrom and colleagues.

8,837 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a new approach to global sustainability in which they define planetary boundaries within which they expect that humanity can operate safely. But the proposed concept of "planetary boundaries" lays the groundwork for shifting our approach to governance and management, away from the essentially sectoral analyses of limits to growth aimed at minimizing negative externalities, toward the estimation of the safe space for human development.
Abstract: Anthropogenic pressures on the Earth System have reached a scale where abrupt global environmental change can no longer be excluded. We propose a new approach to global sustainability in which we define planetary boundaries within which we expect that humanity can operate safely. Transgressing one or more planetary boundaries may be deleterious or even catastrophic due to the risk of crossing thresholds that will trigger non-linear, abrupt environmental change within continental- to planetary-scale systems. We have identified nine planetary boundaries and, drawing upon current scientific understanding, we propose quantifications for seven of them. These seven are climate change (CO2 concentration in the atmosphere <350 ppm and/or a maximum change of +1 W m-2 in radiative forcing); ocean acidification (mean surface seawater saturation state with respect to aragonite ≥ 80% of pre-industrial levels); stratospheric ozone (<5% reduction in O3 concentration from pre-industrial level of 290 Dobson Units); biogeochemical nitrogen (N) cycle (limit industrial and agricultural fixation of N2 to 35 Tg N yr-1) and phosphorus (P) cycle (annual P inflow to oceans not to exceed 10 times the natural background weathering of P); global freshwater use (<4000 km3 yr-1 of consumptive use of runoff resources); land system change (<15% of the ice-free land surface under cropland); and the rate at which biological diversity is lost (annual rate of <10 extinctions per million species). The two additional planetary boundaries for which we have not yet been able to determine a boundary level are chemical pollution and atmospheric aerosol loading. We estimate that humanity has already transgressed three planetary boundaries: for climate change, rate of biodiversity loss, and changes to the global nitrogen cycle. Planetary boundaries are interdependent, because transgressing one may both shift the position of other boundaries or cause them to be transgressed. The social impacts of transgressing boundaries will be a function of the social-ecological resilience of the affected societies. Our proposed boundaries are rough, first estimates only, surrounded by large uncertainties and knowledge gaps. Filling these gaps will require major advancements in Earth System and resilience science. The proposed concept of "planetary boundaries" lays the groundwork for shifting our approach to governance and management, away from the essentially sectoral analyses of limits to growth aimed at minimizing negative externalities, toward the estimation of the safe space for human development. Planetary boundaries define, as it were, the boundaries of the "planetary playing field" for humanity if we want to be sure of avoiding major human-induced environmental change on a global scale.

4,771 citations

Journal ArticleDOI
07 Dec 2001-Science
TL;DR: Human activities are releasing tiny particles (aerosols) into the atmosphere that enhance scattering and absorption of solar radiation, which can lead to a weaker hydrological cycle, which connects directly to availability and quality of fresh water, a major environmental issue of the 21st century.
Abstract: Human activities are releasing tiny particles (aerosols) into the atmosphere. These human-made aerosols enhance scattering and absorption of solar radiation. They also produce brighter clouds that are less efficient at releasing precipitation. These in turn lead to large reductions in the amount of solar irradiance reaching Earth's surface, a corresponding increase in solar heating of the atmosphere, changes in the atmospheric temperature structure, suppression of rainfall, and less efficient removal of pollutants. These aerosol effects can lead to a weaker hydrological cycle, which connects directly to availability and quality of fresh water, a major environmental issue of the 21st century.

3,469 citations

Journal ArticleDOI
01 Jan 2002-Nature
TL;DR: It seems appropriate to assign the term ‘Anthropocene’ to the present, in many ways human-dominated, geological epoch, supplementing the Holocene—the warm period of the past 10–12 millennia.
Abstract: For the past three centuries, the effects of humans on the global environment have escalated. Because of these anthro-pogenic emissions of carbon dioxide, global climate may depart significantly from natural behaviour for many millennia to come. It seems appropriate to assign the term ‘Anthropocene’ to the present, in many ways human-dominated, geological epoch, supplementing the Holocene—the warm period of the past 10–12 millennia.

3,200 citations

Journal ArticleDOI
TL;DR: This work uses atmospheric carbon dioxide concentration as a single, simple indicator to track the progression of the Anthropocene, the current epoch in which humans and the authors' societies have become a global geophysical force.
Abstract: We explore the development of the Anthropocene, the current epoch in which humans and our societies have become a global geophysical force. The Anthropocene began around 1800 with the onset of industrialization, the central feature of which was the enormous expansion in the use of fossil fuels. We use atmospheric carbon dioxide concentration as a single, simple indicator to track the progression of the Anthropocene. From a preindustrial value of 270-275 ppm, atmospheric carbon dioxide had risen to about 310 ppm by 1950. Since then the human enterprise has experienced a remarkable explosion, the Great Acceleration, with significant consequences for Earth System functioning. Atmospheric CO2 concentration has risen from 310 to 380 ppm since 1950, with about half of the total rise since the preindustrial era occurring in just the last 30 years. The Great Acceleration is reaching criticality. Whatever unfolds, the next few decades will surely be a tipping point in the evolution of the Anthropocene.

2,585 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: In this article, the authors present an overview of the climate system and its dynamics, including observed climate variability and change, the carbon cycle, atmospheric chemistry and greenhouse gases, and their direct and indirect effects.
Abstract: Summary for policymakers Technical summary 1. The climate system - an overview 2. Observed climate variability and change 3. The carbon cycle and atmospheric CO2 4. Atmospheric chemistry and greenhouse gases 5. Aerosols, their direct and indirect effects 6. Radiative forcing of climate change 7. Physical climate processes and feedbacks 8. Model evaluation 9. Projections of future climate change 10. Regional climate simulation - evaluation and projections 11. Changes in sea level 12. Detection of climate change and attribution of causes 13. Climate scenario development 14. Advancing our understanding Glossary Index Appendix.

13,366 citations

Journal ArticleDOI
23 Sep 2009-Nature
TL;DR: Identifying and quantifying planetary boundaries that must not be transgressed could help prevent human activities from causing unacceptable environmental change, argue Johan Rockstrom and colleagues.
Abstract: Identifying and quantifying planetary boundaries that must not be transgressed could help prevent human activities from causing unacceptable environmental change, argue Johan Rockstrom and colleagues.

8,837 citations

01 Jan 2007
TL;DR: Drafting Authors: Neil Adger, Pramod Aggarwal, Shardul Agrawala, Joseph Alcamo, Abdelkader Allali, Oleg Anisimov, Nigel Arnell, Michel Boko, Osvaldo Canziani, Timothy Carter, Gino Casassa, Ulisses Confalonieri, Rex Victor Cruz, Edmundo de Alba Alcaraz, William Easterling, Christopher Field, Andreas Fischlin, Blair Fitzharris.
Abstract: Drafting Authors: Neil Adger, Pramod Aggarwal, Shardul Agrawala, Joseph Alcamo, Abdelkader Allali, Oleg Anisimov, Nigel Arnell, Michel Boko, Osvaldo Canziani, Timothy Carter, Gino Casassa, Ulisses Confalonieri, Rex Victor Cruz, Edmundo de Alba Alcaraz, William Easterling, Christopher Field, Andreas Fischlin, Blair Fitzharris, Carlos Gay García, Clair Hanson, Hideo Harasawa, Kevin Hennessy, Saleemul Huq, Roger Jones, Lucka Kajfež Bogataj, David Karoly, Richard Klein, Zbigniew Kundzewicz, Murari Lal, Rodel Lasco, Geoff Love, Xianfu Lu, Graciela Magrín, Luis José Mata, Roger McLean, Bettina Menne, Guy Midgley, Nobuo Mimura, Monirul Qader Mirza, José Moreno, Linda Mortsch, Isabelle Niang-Diop, Robert Nicholls, Béla Nováky, Leonard Nurse, Anthony Nyong, Michael Oppenheimer, Jean Palutikof, Martin Parry, Anand Patwardhan, Patricia Romero Lankao, Cynthia Rosenzweig, Stephen Schneider, Serguei Semenov, Joel Smith, John Stone, Jean-Pascal van Ypersele, David Vaughan, Coleen Vogel, Thomas Wilbanks, Poh Poh Wong, Shaohong Wu, Gary Yohe

7,720 citations

Journal ArticleDOI
TL;DR: The new HITRAN is greatly extended in terms of accuracy, spectral coverage, additional absorption phenomena, added line-shape formalisms, and validity, and molecules, isotopologues, and perturbing gases have been added that address the issues of atmospheres beyond the Earth.
Abstract: This paper describes the contents of the 2016 edition of the HITRAN molecular spectroscopic compilation. The new edition replaces the previous HITRAN edition of 2012 and its updates during the intervening years. The HITRAN molecular absorption compilation is composed of five major components: the traditional line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, infrared absorption cross-sections for molecules not yet amenable to representation in a line-by-line form, collision-induced absorption data, aerosol indices of refraction, and general tables such as partition sums that apply globally to the data. The new HITRAN is greatly extended in terms of accuracy, spectral coverage, additional absorption phenomena, added line-shape formalisms, and validity. Moreover, molecules, isotopologues, and perturbing gases have been added that address the issues of atmospheres beyond the Earth. Of considerable note, experimental IR cross-sections for almost 300 additional molecules important in different areas of atmospheric science have been added to the database. The compilation can be accessed through www.hitran.org. Most of the HITRAN data have now been cast into an underlying relational database structure that offers many advantages over the long-standing sequential text-based structure. The new structure empowers the user in many ways. It enables the incorporation of an extended set of fundamental parameters per transition, sophisticated line-shape formalisms, easy user-defined output formats, and very convenient searching, filtering, and plotting of data. A powerful application programming interface making use of structured query language (SQL) features for higher-level applications of HITRAN is also provided.

7,638 citations