scispace - formally typeset
Search or ask a question
Author

Paul J. Pinter

Bio: Paul J. Pinter is an academic researcher from Agricultural Research Service. The author has contributed to research in topics: Evapotranspiration & Soil water. The author has an hindex of 66, co-authored 146 publications receiving 12043 citations. Previous affiliations of Paul J. Pinter include United States Department of Agriculture.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a crop water stress index (CWSI) was calculated using infrared thermometry, along with wet and dry-bulb air temperatures and an estimate of net radiation.
Abstract: Canopy temperatures, obtained by infrared thermometry, along with wet- and dry-bulb air temperatures and an estimate of net radiation were used in equations derived from energy balance considerations to calculate a crop water stress index (CWSI). Theoretical limits were developed for the canopy air temperature difference as related to the air vapor pressure deficit. The CWSI was shown to be equal to 1 - E/Ep, the ratio of actual to potential evapotranspiration obtained from the Penman-Monteith equation. Four experimental plots, planted to wheat, received postemergence irrigations at different times to create different degrees of water stress. Pertinent variables were measured between 1340 and 1400 each day (except some weekends). The CWSI, plotted as a function of time, closely paralleled a plot of the extractable soil water in the 0- to 1.1-m zone. The usefulness and limitations of the index are discussed.

1,642 citations

Journal ArticleDOI
TL;DR: With the development and use of various remote sensing methods for non-destructive monitor- ing of plant growth and development and for the detection of many environmental stresses which limit plant productivity, a great deal of fundamental information relating spectral reflectance and thermal emittance properties of soils and crops to their agronomic and biophysical characteristics has been provided as mentioned in this paper.
Abstract: with the Agricultural Research Service (ARS) and various government agencies and private institutions have provided a great deal of fundamental information relating spectral reflectance and thermal emittance properties of soils and crops to their agronomic and biophysical characteristics. This knowledge has facilitated the development and use of various remote sensing methods for non-destructive monitor- ing of plant growth and development and for the detection of many environmental stresses which limit plant productivity. Coupled with rapid advances in computing and position- locating technologies, remote sensing from ground-, air-, and space-based platforms is now capable of providing detailed spatial and temporal information on plant response to their local environment that is needed for site specific agricultural management approaches. This manuscript, which empha- sizes contributions by ARS researchers, reviews the biophysi- cal basis of remote sensing; examines approaches that have been developed, refined, and tested for management of water, nutrients, and pests in agricultural crops; and as- sesses the role of remote sensing in yield prediction. It con- cludes with a discussion of challenges facing remote sens- ing in the future.

551 citations

Journal ArticleDOI
TL;DR: A free-air CO2 enrichment (FACE) experiment was conducted at Maricopa, Arizona, on wheat from December 1992 through May 1993 as mentioned in this paper, where the FACE apparatus maintained the CO2 concentration, [CO2], at 550 μmol mol−1 across four replicate 25m-diameter circular plots under natural conditions in an open field.
Abstract: A free-air CO2 enrichment (FACE) experiment was conducted at Maricopa, Arizona, on wheat from December 1992 through May 1993. The FACE apparatus maintained the CO2 concentration, [CO2], at 550 μmol mol−1 across four replicate 25-m-diameter circular plots under natural conditions in an open field. Four matching Control plots at ambient [CO2] (about 370 μmol mol−1) were also installed in the field. In addition to the two levels of [CO2], there were ample (Wet) and limiting (Dry) levels of water supplied through a subsurface drip irrigation system in a strip, split-plot design. Measurements were made of net radiation, Rn; soil heat flux, Go; soil temperature; foliage or surface temperature; air dry and wet bulb temperatures; and wind speed. Sensible heat flux, H, was calculated from the wind and temperature measurements. Latent heat flux, λET, and evapotranspiration, ET, were determined as the residual in the energy balance. The FACE treatment reduced daily total Rn by an average 4%. Daily FACE sensible heat flux, H, was higher in the FACE plots. Daily latent heat flux, λET, and evapotranspiration, ET, were consistently lower in the FACE plots than in the Control plots for most of the growing season, about 8% on the average. Net canopy photosynthesis was stimulated by an average 19 and 44% in the Wet and Dry plots, respectively, by elevated [CO2] for most of the growing season. No significant acclimation or down regulation was observed. There was little above-ground growth response to elevated [CO2] early in the season when temperatures were cool. Then, as temperatures warmed into spring, the FACE plants grew about 20% more than the Control plants at ambient [CO2], as shown by above-ground biomass accumulation. Root biomass accumulation was also stimulated about 20%. In May the FACE plants matured and senesced about a week earlier than the Controls in the Wet plots. The FACE plants averaged 0.6 °C warmer than the Controls from February through April in the well-watered plots, and we speculate that this temperature rise contributed to the earlier maturity. Because of the acceleration of senescence, there was a shortening of the duration of grain filling, and consequently, there was a narrowing of the final biomass and yield differences. The 20% mid-season growth advantage of FACE shrunk to about an 8% yield advantage in the Wet plots, while the yield differences between FACE and Control remained at about 20% in the Dry plots.

344 citations

Journal ArticleDOI
TL;DR: In this paper, a hand-held radiometer having bands similar to the MSS bands of the LANDSAT satellites was used to obtain reflectance data over a drought-stressed and a well-watered wheat plot.

325 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of different timing and duration of water deficit on crop growth and yield were reproduced with the model for a rain-shelter experiment at Lincoln, New Zealand where observed grain yields were reduced from 10 to 4 t −1 due to increased water deficit.

295 citations


Cited by
More filters
Book
01 Jan 1998
TL;DR: In this paper, an updated procedure for calculating reference and crop evapotranspiration from meteorological data and crop coefficients is presented, based on the FAO Penman-Monteith method.
Abstract: (First edition: 1998, this reprint: 2004). This publication presents an updated procedure for calculating reference and crop evapotranspiration from meteorological data and crop coefficients. The procedure, first presented in FAO Irrigation and Drainage Paper No. 24, Crop water requirements, in 1977, allows estimation of the amount of water used by a crop, taking into account the effect of the climate and the crop characteristics. The publication incorporates advances in research and more accurate procedures for determining crop water use as recommended by a panel of high-level experts organised by FAO in May 1990. The first part of the guidelines includes procedures for determining reference crop evapotranspiration according to the FAO Penman-Monteith method. These are followed by updated procedures for estimating the evapotranspiration of different crops for different growth stages and ecological conditions.

21,958 citations

Journal ArticleDOI
TL;DR: In this article, a transformation technique was presented to minimize soil brightness influences from spectral vegetation indices involving red and near-infrared (NIR) wavelengths, which nearly eliminated soil-induced variations in vegetation indices.

5,450 citations

Journal ArticleDOI
TL;DR: The normalized difference water index (NDWI) as discussed by the authors was proposed for remote sensing of vegetation liquid water from space, which is defined as (ϱ(0.86 μm) − ϱ(1.24 μm)) where ϱ represents the radiance in reflectance units.

4,461 citations

Journal ArticleDOI
TL;DR: The benefits of the new, re-designed DSSAT-CSM will provide considerable opportunities to its developers and others in the scientific community for greater cooperation in interdisciplinary research and in the application of knowledge to solve problems at field, farm, and higher levels.

3,339 citations

Journal ArticleDOI
01 Jan 2005-Geoderma
TL;DR: In this paper, soil organic carbon (SOC), biota, ionic bridging, clay and carbonates are associated with aggregation by rearrangement, flocculation and cementation.

3,241 citations