scispace - formally typeset
Search or ask a question
Author

Paul L. Ornstein

Bio: Paul L. Ornstein is an academic researcher from Eli Lilly and Company. The author has contributed to research in topics: AMPA receptor & Kainate receptor. The author has an hindex of 45, co-authored 161 publications receiving 6673 citations. Previous affiliations of Paul L. Ornstein include Centre national de la recherche scientifique & University of California, Los Angeles.


Papers
More filters
Journal ArticleDOI
09 Oct 1997-Nature
TL;DR: The effects of a potent and selective agonist and a selective antagonist are used to show that kainate receptors, comprised of or containing GluR5 subunits, regulate synaptic inhibition in the hippocampus, an action that could contribute to the epileptogenic effects of kainates.
Abstract: The principal excitatory neurotransmitter in the vertebrate central nervous system, L-glutamate, acts on three classes of ionotripic glutamate receptors, named after the agonists AMPA (α-amino-3-hydroxy-5-methyl-4-isoxalole-4-propionic acid), NMDA ( N -methyl-D-aspartate) and kainate1 The development of selective pharmacological agents has led to a detailed understanding ofthe physiological and pathological roles of AMPA and NMDA receptors2,3,4,5,6,7,8 In contrast, the lack of selective kainate receptor ligands has greatly hindered progress in understanding the rolesof kainate receptors9,10 Here we describe the effects of a potent and selective agonist, ATPA (( RS)-2-amino-3-(3-hydroxy-5- tert -butylisoxazol-4-yl)propanoic acid) and a selective antagonist, LY294486 ((3SR, 4aRS, 6SR, 8aRS)-6-((((1H-tetrazol-5-yl) methyl)oxy)methyl)-1, 2, 3, 4, 4a, 5, 6, 7, 8, 8a-decahydroisoquinoline-3-carboxylic acid), of the GluR5 subtype of kainate receptor11 We have used these agents to show that kainate receptors, comprised of or containing GluR5 subunits, regulate synaptic inhibition in the hippocampus, an action that could contribute to the epileptogenic effects of kainate12,13,14,15,16,17

429 citations

Journal ArticleDOI
TL;DR: The in vitro pharmacology of a structurally novel compound, LY341495, was investigated at human recombinant metabotropic glutamate (mGlu) receptor subtypes expressed in non-neuronal cells and represents a novel pharmacological agent for elucidating the function of mGlu receptors in experimental systems.

377 citations

Journal ArticleDOI
18 Nov 1999-Nature
TL;DR: It is found that LY382884 is a selective antagonist at neuronal kainate receptors containing the GluR5 subunit, which has no effect on long-term potentiation (LTP) that is dependent onNMDA receptors but prevents the induction of mossy fibre LTP, which is independent of NMDA receptors.
Abstract: The ability of synapses to modify their synaptic strength in response to activity is a fundamental property of the nervous system and may be an essential component of learning and memory. There are three classes of ionotropic glutamate receptor, namely NMDA (N-methyl-D-aspartate), AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionic acid) and kainate receptors; critical roles in synaptic plasticity have been identified for two of these. Thus, at many synapses in the brain, transient activation of NMDA receptors leads to a persistent modification in the strength of synaptic transmission mediated by AMPA receptors. Here, to determine whether kainate receptors are involved in synaptic plasticity, we have used a new antagonist, LY382884 ((3S, 4aR, 6S, 8aR)-6-((4-carboxyphenyl)methyl-1,2,3,4,4a,5,6,7,8,8a-decahydro isoquinoline-3-carboxylic acid), which antagonizes kainate receptors at concentrations that do not affect AMPA or NMDA receptors. We find that LY382884 is a selective antagonist at neuronal kainate receptors containing the GluR5 subunit. It has no effect on long-term potentiation (LTP) that is dependent on NMDA receptors but prevents the induction of mossy fibre LTP, which is independent of NMDA receptors. Thus, kainate receptors can act as the induction trigger for long-term changes in synaptic transmission.

333 citations

Journal ArticleDOI
20 Nov 2001-Neuron
TL;DR: The results identify a central role for the presynaptic kainate receptor in the induction of mossy fiber LTP and suggest that the pathway by which kainates receptors facilitate glutamate release is utilized for the expression of mossY fiber LTB.

209 citations

Journal ArticleDOI
17 Jul 2003-Neuron
TL;DR: These findings suggest that presynaptic kainate receptors at mossy fiber synapses can initiate a cascade involving Ca2+ release from intracellular stores that is important in both short-term and long-term plasticity.

188 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The median-effect principle and its mass-action law based computer software are gaining increased applications in biomedical sciences, from how to effectively evaluate a single compound or entity to how to beneficially use multiple drugs or modalities in combination therapies.
Abstract: The median-effect equation derived from the mass-action law principle at equilibrium-steady state via mathematical induction and deduction for different reaction sequences and mechanisms and different types of inhibition has been shown to be the unified theory for the Michaelis-Menten equation, Hill equation, Henderson-Hasselbalch equation, and Scatchard equation. It is shown that dose and effect are interchangeable via defined parameters. This general equation for the single drug effect has been extended to the multiple drug effect equation for n drugs. These equations provide the theoretical basis for the combination index (CI)-isobologram equation that allows quantitative determination of drug interactions, where CI 1 indicate synergism, additive effect, and antagonism, respectively. Based on these algorithms, computer software has been developed to allow automated simulation of synergism and antagonism at all dose or effect levels. It displays the dose-effect curve, median-effect plot, combination index plot, isobologram, dose-reduction index plot, and polygonogram for in vitro or in vivo studies. This theoretical development, experimental design, and computerized data analysis have facilitated dose-effect analysis for single drug evaluation or carcinogen and radiation risk assessment, as well as for drug or other entity combinations in a vast field of disciplines of biomedical sciences. In this review, selected examples of applications are given, and step-by-step examples of experimental designs and real data analysis are also illustrated. The merging of the mass-action law principle with mathematical induction-deduction has been proven to be a unique and effective scientific method for general theory development. The median-effect principle and its mass-action law based computer software are gaining increased applications in biomedical sciences, from how to effectively evaluate a single compound or entity to how to beneficially use multiple drugs or modalities in combination therapies.

4,270 citations

Journal Article
TL;DR: The cloning of cDNAs encoding glutamate receptor subunits, which occurred mainly between 1989 and 1992, stimulated the development of ionotropic glutamate receptors in the brain.
Abstract: The ionotropic glutamate receptors are ligand-gated ion channels that mediate the vast majority of excitatory neurotransmission in the brain. The cloning of cDNAs encoding glutamate receptor subunits, which occurred mainly between 1989 and 1992 ([Hollmann and Heinemann, 1994][1]), stimulated this

4,112 citations

Journal ArticleDOI
30 Sep 2004-Neuron
TL;DR: This work reviews those forms of LTP and LTD for which mechanisms have been most firmly established and examples are provided that show how these mechanisms can contribute to experience-dependent modifications of brain function.

3,767 citations

Journal ArticleDOI
TL;DR: This review discusses International Union of Basic and Clinical Pharmacology glutamate receptor nomenclature, structure, assembly, accessory subunits, interacting proteins, gene expression and translation, post-translational modifications, agonist and antagonist pharmacology, allosteric modulation, mechanisms of gating and permeation, roles in normal physiological function, as well as the potential therapeutic use of pharmacological agents acting at glutamate receptors.
Abstract: The mammalian ionotropic glutamate receptor family encodes 18 gene products that coassemble to form ligand-gated ion channels containing an agonist recognition site, a transmembrane ion permeation pathway, and gating elements that couple agonist-induced conformational changes to the opening or closing of the permeation pore. Glutamate receptors mediate fast excitatory synaptic transmission in the central nervous system and are localized on neuronal and non-neuronal cells. These receptors regulate a broad spectrum of processes in the brain, spinal cord, retina, and peripheral nervous system. Glutamate receptors are postulated to play important roles in numerous neurological diseases and have attracted intense scrutiny. The description of glutamate receptor structure, including its transmembrane elements, reveals a complex assembly of multiple semiautonomous extracellular domains linked to a pore-forming element with striking resemblance to an inverted potassium channel. In this review we discuss International Union of Basic and Clinical Pharmacology glutamate receptor nomenclature, structure, assembly, accessory subunits, interacting proteins, gene expression and translation, post-translational modifications, agonist and antagonist pharmacology, allosteric modulation, mechanisms of gating and permeation, roles in normal physiological function, as well as the potential therapeutic use of pharmacological agents acting at glutamate receptors.

3,044 citations