scispace - formally typeset
Search or ask a question
Author

Paul L. Stiles

Bio: Paul L. Stiles is an academic researcher from Northwestern University. The author has contributed to research in topics: Surface plasmon resonance & Surface-enhanced Raman spectroscopy. The author has an hindex of 1, co-authored 1 publications receiving 2333 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The ability to control the size, shape, and material of a surface has reinvigorated the field of surface-enhanced Raman spectroscopy (SERS) as mentioned in this paper.
Abstract: The ability to control the size, shape, and material of a surface has reinvigorated the field of surface-enhanced Raman spectroscopy (SERS). Because excitation of the localized surface plasmon resonance of a nanostructured surface or nanoparticle lies at the heart of SERS, the ability to reliably control the surface characteristics has taken SERS from an interesting surface phenomenon to a rapidly developing analytical tool. This article first explains many fundamental features of SERS and then describes the use of nanosphere lithography for the fabrication of highly reproducible and robust SERS substrates. In particular, we review metal film over nanosphere surfaces as excellent candidates for several experiments that were once impossible with more primitive SERS substrates (e.g., metal island films). The article also describes progress in applying SERS to the detection of chemical warfare agents and several biological molecules.

2,578 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review describes recent fundamental spectroscopic studies that reveal key relationships governing the LSPR spectral location and its sensitivity to the local environment, including nanoparticle shape and size and introduces a new form of L SPR spectroscopy, involving the coupling between nanoparticle plasmon resonances and adsorbate molecular resonances.
Abstract: Localized surface plasmon resonance (LSPR) spectroscopy of metallic nanoparticles is a powerful technique for chemical and biological sensing experiments. Moreover, the LSPR is responsible for the electromagnetic-field enhancement that leads to surface-enhanced Raman scattering (SERS) and other surface-enhanced spectroscopic processes. This review describes recent fundamental spectroscopic studies that reveal key relationships governing the LSPR spectral location and its sensitivity to the local environment, including nanoparticle shape and size. We also describe studies on the distance dependence of the enhanced electromagnetic field and the relationship between the plasmon resonance and the Raman excitation energy. Lastly, we introduce a new form of LSPR spectroscopy, involving the coupling between nanoparticle plasmon resonances and adsorbate molecular resonances. The results from these fundamental studies guide the design of new sensing experiments, illustrated through applications in which researchers use both LSPR wavelength-shift sensing and SERS to detect molecules of chemical and biological relevance.

5,444 citations

Journal ArticleDOI
TL;DR: In this article, a review of the photo and electron properties of carbon nanodots is presented to provide further insight into their controversial emission origin and to stimulate further research into their potential applications, especially in photocatalysis, energy conversion, optoelectronics, and sensing.
Abstract: Carbon nanodots (C-dots) have generated enormous excitement because of their superiority in water solubility, chemical inertness, low toxicity, ease of functionalization and resistance to photobleaching. In this review, by introducing the synthesis and photo- and electron-properties of C-dots, we hope to provide further insight into their controversial emission origin (particularly the upconverted photoluminescence) and to stimulate further research into their potential applications, especially in photocatalysis, energy conversion, optoelectronics, and sensing.

2,262 citations

Journal ArticleDOI
TL;DR: Chemical applications of SERS cover a broad range of topics such as catalysis and spectroelectrochemistry, single-molecule detection, and (bio)analytical chemistry.
Abstract: Surface-enhanced Raman scattering (SERS) has become a mature vibrational spectroscopic technique during the last decades and the number of applications in the chemical, material, and in particular life sciences is rapidly increasing. This Review explains the basic theory of SERS in a brief tutorial and-based on original results from recent research-summarizes fundamental aspects necessary for understanding SERS and provides examples for the preparation of plasmonic nanostructures for SERS. Chemical applications of SERS are the centerpiece of this Review. They cover a broad range of topics such as catalysis and spectroelectrochemistry, single-molecule detection, and (bio)analytical chemistry.

1,817 citations

Journal ArticleDOI
TL;DR: Surface enhanced Raman spectroscopy (SERS) is a powerful vibrational spectrograph that allows for highly sensitive structural detection of low concentration analytes through the amplification of electromagnetic fields generated by the excitation of localized surface plasmons.

1,793 citations

Journal ArticleDOI
TL;DR: A review of the plasmon-enhanced Raman spectroscopy (PERS) field can be found in this paper, where a new generation of hotspots that are generated from hybrid structures combining PERS-active nanostructures and probe materials are discussed.
Abstract: Since 2000, there has been an explosion of activity in the field of plasmon-enhanced Raman spectroscopy (PERS), including surface-enhanced Raman spectroscopy (SERS), tip-enhanced Raman spectroscopy (TERS) and shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). In this Review, we explore the mechanism of PERS and discuss PERS hotspots — nanoscale regions with a strongly enhanced local electromagnetic field — that allow trace-molecule detection, biomolecule analysis and surface characterization of various materials. In particular, we discuss a new generation of hotspots that are generated from hybrid structures combining PERS-active nanostructures and probe materials, which feature a strong local electromagnetic field on the surface of the probe material. Enhancement of surface Raman signals up to five orders of magnitude can be obtained from materials that are weakly SERS active or SERS inactive. We provide a detailed overview of future research directions in the field of PERS, focusing on new PERS-active nanomaterials and nanostructures and the broad application prospect for materials science and technology. Assisted by rationally designed novel plasmonic nanostructures, surface-enhanced Raman spectroscopy has presented a new generation of analytical tools (that is, tip-enhanced Raman spectroscopy and shell-isolated nanoparticle-enhanced Raman spectroscopy) with an extremely high surface sensitivity, spatial resolution and broad application for materials science and technology.

1,158 citations