scispace - formally typeset
Search or ask a question
Author

Paul M Anderson

Bio: Paul M Anderson is an academic researcher. The author has contributed to research in topics: Power-system protection & Electric power system. The author has an hindex of 1, co-authored 1 publications receiving 753 citations.

Papers
More filters
Book
01 May 2013
TL;DR: P.P. Anderson, a noted expert on power systems, presents an analytical and technical approach to power system protection, showing how abnormal system behavior can be detected before damage occurs, and points to effective control action to limit system outages.
Abstract: "In a world of huge, interconnected networks that can be completely blacked out by disturbances, POWER SYSTEM PROTECTION offers you an improved understanding of the requirements necessary for prompt and accurate corrective action.P. M. Anderson, a noted expert on power systems, presents an analytical and technical approach to power system protection. His discussion shows how abnormal system behavior can be detected before damage occurs, and points to effective control action to limit system outages.Advance your knowledge of power system protection through a better understanding of:Protective devices and controlsProtection conceptsTransmission protectionApparatus protectionSystem aspects of protective systemsReliability analysis of protective systemsPOWER SYSTEM PROTECTION is expressly written for practicing engineers and advanced graduate-level student engineers who need a comprehensive resource on the principles of power system behavior. This essential reference work provides new and advanced concepts for understanding system performance."

758 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, cable faults in VSC-based dc networks are analyzed in detail with the identification and definition of the most serious stages of the fault that need to be avoided and a fault location method is proposed.
Abstract: The application of high-power voltage-source converters (VSCs) to multiterminal dc networks is attracting research interest. The development of VSC-based dc networks is constrained by the lack of operational experience, the immaturity of appropriate protective devices, and the lack of appropriate fault analysis techniques. VSCs are vulnerable to dc-cable short-circuit and ground faults due to the high discharge current from the dc-link capacitance. However, faults occurring along the interconnecting dc cables are most likely to threaten system operation. In this paper, cable faults in VSC-based dc networks are analyzed in detail with the identification and definition of the most serious stages of the fault that need to be avoided. A fault location method is proposed because this is a prerequisite for an effective design of a fault protection scheme. It is demonstrated that it is relatively easy to evaluate the distance to a short-circuit fault using voltage reference comparison. For the more difficult challenge of locating ground faults, a method of estimating both the ground resistance and the distance to the fault is proposed by analyzing the initial stage of the fault transient. Analysis of the proposed method is provided and is based on simulation results, with a range of fault resistances, distances, and operational conditions considered.

665 citations

Journal ArticleDOI
TL;DR: In this paper, the authors propose a handshaking method to locate and isolate the faulted dc line and restore the MTDC without telecommunication, which is shown to be more economical than the dc circuit breakers.
Abstract: A VSC-MTDC (multi-terminal dc) system consists of voltage-source converters (VSCs) connected to a dc network at their dc terminals. The MTDC is most vulnerable to a dc fault which paralyses all the VSCs until the dc fault is cleared. As dc circuit breakers are expensive, this paper proposes a solution based on extinguishing the dc fault current by opening all the ac-circuit breakers (ac-CBs) which the VSCs are already equipped with on the ac-sides. However, it is necessary to identify which dc line is the faulted line (in case it is a permanent fault) so that it can be isolated by fast dc switches (which are much more economical than the dc circuit breakers), prior to restoring the MTDC system by re-closing all the ac-CBs. This paper presents the handshaking method, which locates and isolates the faulted dc line and restores the MTDC without telecommunication.

617 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of high DG penetration on protective device coordination is explored and an adaptive protection scheme is proposed as a solution to the problems identified, which is implemented on a simulated actual distribution feeder.
Abstract: Conventional power distribution system is radial in nature, characterized by a single source feeding a network of downstream feeders. Protection scheme for distribution system, primarily consisting of fuses and reclosers and, in some cases, relays, has traditionally been designed assuming the system to be radial. After connecting distributed generation (DG), part of the system may no longer be radial, which means the coordination might not hold. The effect of DG on coordination will depend on size, type, and placement of DG. This paper explores the effect of high DG penetration on protective device coordination and suggests an adaptive protection scheme as a solution to the problems identified. Results of implementation of this scheme on a simulated actual distribution feeder are reported.

590 citations

Journal ArticleDOI
TL;DR: In this article, an overview of the key issues and new challenges on frequency regulation concerning the integration of renewable energy units into the power systems is presented, followed by a brief survey on the existing challenges and recent developments, the impact of power fluctuation produced by variable renewable sources (such as wind and solar units) on system frequency performance is also presented.
Abstract: As the use of renewable energy sources (RESs) increases worldwide, there is a rising interest on their impacts on power system operation and control. An overview of the key issues and new challenges on frequency regulation concerning the integration of renewable energy units into the power systems is presented. Following a brief survey on the existing challenges and recent developments, the impact of power fluctuation produced by variable renewable sources (such as wind and solar units) on system frequency performance is also presented. An updated LFC model is introduced, and power system frequency response in the presence of RESs and associated issues is analysed. The need for the revising of frequency performance standards is emphasised. Finally, non-linear time-domain simulations on the standard 39-bus and 24-bus test systems show that the simulated results agree with those predicted analytically.

432 citations

Proceedings ArticleDOI
11 Jul 2001
TL;DR: The effect of DG on protective device coordination such as fuse-fuse, fuse-recloser and relay-relay is explored, finding some margins in which the coordination may hold and certain cases, where no margin is available.
Abstract: Protection of a power system is an extremely important aspect as the duality and scheme of protection decides system reliability, controllability and stability. This paper concentrates on the protection of a distribution system in the light of developments in distributed generation (DG). The conventional distribution system is radial in nature, characterized by a single source feeding a network of down-stream feeders. The protection system has traditionally been designed assuming the system to be radial. After connecting DG, part of the system may no longer be radial, which means the coordination might not hold. The effect of DG on coordination will depend on size, type and placement of DG. This paper explores the effect of DG on protective device coordination such as fuse-fuse, fuse-recloser and relay-relay. In each case, depending on size and placement of DG, there are some margins in which the coordination may hold and certain cases, where no margin is available. These conditions are identified for each case through coordination graphs.

396 citations