scispace - formally typeset
Search or ask a question
Author

Paul M. Bertsch

Bio: Paul M. Bertsch is an academic researcher from Commonwealth Scientific and Industrial Research Organisation. The author has contributed to research in topics: Corporate governance & Clay minerals. The author has an hindex of 62, co-authored 162 publications receiving 10090 citations. Previous affiliations of Paul M. Bertsch include Medical University of South Carolina & University of Queensland.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors used the model organisms Nicotiana tabacum L cv Xanthi and Manduca sexta (tobacco hornworm) to investigate plant uptake and the potential for trophic transfer of 5, 10, and 15 nm diameter gold nanoparticles.
Abstract: Nanoparticles from the rapidly increasing number of consumer products that contain manufactured nanomaterials are being discharged into waste streams Increasing evidence suggests that several classes of nanomaterials may accumulate in sludge derived from wastewater treatment and ultimately in soil following land application as biosolids Little research has been conducted to evaluate the impact of nanoparticles on terrestrial ecosystems, despite the fact that land application of biosolids from wastewater treatment will be a major pathway for the introduction of manufactured nanomaterials to the environment To begin addressing this knowledge gap, we used the model organisms Nicotiana tabacum L cv Xanthi and Manduca sexta (tobacco hornworm) to investigate plant uptake and the potential for trophic transfer of 5, 10, and 15 nm diameter gold (Au) nanoparticles (NPs) Samples were analyzed using both bulk analysis by inductively coupled plasma mass spectrometry (ICP-MS) as well as spatially resolved methods such as laser ablation inductively coupled mass spectrometry (LA-ICP-MS) and X-ray fluorescence (μXRF) Our results demonstrate trophic transfer and biomagnification of gold nanoparticles from a primary producer to a primary consumer by mean factors of 62, 116, and 96 for the 5, 10, and 15 nm treatments, respectively This result has important implications for risks associated with nanotechnology, including the potential for human exposure

329 citations

Journal ArticleDOI
TL;DR: In this article, a molecular dynamics model for clays and the oxide minerals is presented for studying the kinetics and thermodynamics of adsorption processes, and a valence force field for aluminous, dioctahedral clay minerals is developed.
Abstract: A molecular dynamics model for clays and the oxide minerals is desirable for studying the kinetics and thermodynamics of adsorption processes. To this end, a valence force field for aluminous, dioctahedral clay minerals was developed. Novel aspects of this development include the bending potential for octahedral O−Al−O angles, which uses a quartic polynomial to create a double-well potential with minima at both 90° and 180°. Also, atomic point charges were derived from comparisons of ab initio molecular electrostatic potentials with X-ray diffraction-based deformation electron densities. Isothermal−isobaric molecular dynamics simulations of quartz, gibbsite, kaolinite, and pyrophyllite were used to refine the potential energy parameters. The resultant force field reproduced all the major structural parameters of these minerals to within 1% of their experimentally determined values. Transferability of the force field to simulations of adsorption onto clay mineral surfaces was tested through simulations of ...

270 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is argued that gold nanotechnology-enabled biomedicine is not simply an act of 'gilding the (nanomedicinal) lily', but that a new 'Golden Age' of biomedical nanotechnology is truly upon us.
Abstract: Gold nanoparticles have been used in biomedical applications since their first colloidal syntheses more than three centuries ago. However, over the past two decades, their beautiful colors and unique electronic properties have also attracted tremendous attention due to their historical applications in art and ancient medicine and current applications in enhanced optoelectronics and photovoltaics. In spite of their modest alchemical beginnings, gold nanoparticles exhibit physical properties that are truly different from both small molecules and bulk materials, as well as from other nanoscale particles. Their unique combination of properties is just beginning to be fully realized in range of medical diagnostic and therapeutic applications. This critical review will provide insights into the design, synthesis, functionalization, and applications of these artificial molecules in biomedicine and discuss their tailored interactions with biological systems to achieve improved patient health. Further, we provide a survey of the rapidly expanding body of literature on this topic and argue that gold nanotechnology-enabled biomedicine is not simply an act of ‘gilding the (nanomedicinal) lily’, but that a new ‘Golden Age’ of biomedical nanotechnology is truly upon us. Moving forward, the most challenging nanoscience ahead of us will be to find new chemical and physical methods of functionalizing gold nanoparticles with compounds that can promote efficient binding, clearance, and biocompatibility and to assess their safety to other biological systems and their long-term term effects on human health and reproduction (472 references).

2,712 citations

Journal ArticleDOI
TL;DR: This review critiques existing nanomaterial research in freshwater, marine, and soil environments and illustrates the paucity of existing research and demonstrates the need for additional research.
Abstract: The recent advances in nanotechnology and the corresponding increase in the use of nanomaterials in products in every sector of society have resulted in uncertainties regarding environmental impacts. The objectives of this review are to introduce the key aspects pertaining to nanomaterials in the environment and to discuss what is known concerning their fate, behavior, disposition, and toxicity, with a particular focus on those that make up manufactured nanomaterials. This review critiques existing nanomaterial research in freshwater, marine, and soil environments. It illustrates the paucity of existing research and demonstrates the need for additional research. Environmental scientists are encouraged to base this research on existing studies on colloidal behavior and toxicology. The need for standard reference and testing materials as well as methodology for suspension preparation and testing is also discussed.

2,566 citations

Journal ArticleDOI
TL;DR: In this article, a general force field, CLAYFF, was developed for the simulation of hydrated and multicomponent mineral systems and their interfaces with aqueous solutions, and the potentials were derived from parametrizations incorporating structural and spectroscopic data for a variety of simple hydrated compounds.
Abstract: The fate of chemical and radioactive wastes in the environment is related to the ability of natural phases to attenuate and immobilize contaminants through chemical sorption and precipitation processes. Our understanding of these complex processes at the atomic level is provided by a few experimental and analytical methods such as X-ray absorption and NMR spectroscopies. However, due to complexities in the structure and composition of clay and other hydrated minerals, and the inherent uncertainties of the experimental methods, it is important to apply theoretical molecular models for a fundamental atomic-level understanding, interpretation, and prediction of these phenomena. In this effort, we have developed a general force field, CLAYFF, suitable for the simulation of hydrated and multicomponent mineral systems and their interfaces with aqueous solutions. Interatomic potentials were derived from parametrizations incorporating structural and spectroscopic data for a variety of simple hydrated compounds. A...

2,163 citations

Journal ArticleDOI
TL;DR: This review critically evaluates the current literature on the presence, behaviour and fate of microplastics in freshwater and terrestrial environments and, where appropriate, draws on relevant studies from other fields including nanotechnology, agriculture and waste management.

1,864 citations

Book
01 Jan 2013
TL;DR: In this article, the authors defined the sources of heavy metals and metalloids in Soils and derived methods for the determination of Heavy Metals and Metalloids in soil.
Abstract: Preface.- Contributors.- List of Abbreviations.- Section 1: Basic Principles: Introduction.-Sources of Heavy Metals and Metalloids in Soils.- Chemistry of Heavy Metals and Metalloids in Soils.- Methods for the Determination of Heavy Metals and Metalloids in Soils.- Effects of Heavy Metals and Metalloids on Soil Organisms.- Soil-Plant Relationships of Heavy Metals and Metalloids.- Heavy Metals and Metalloids as Micronutrients for Plants and Animals.-Critical Loads of Heavy Metals for Soils.- Section 2: Key Heavy Metals And Metalloids: Arsenic.- Cadmium.- Chromium and Nickel.- Cobalt and Manganese.- Copper.-Lead.- Mercury.- Selenium.- Zinc.- Section 3: Other Heavy Metals And Metalloids Of Potential Environmental Significance: Antimony.- Barium.- Gold.- Molybdenum.- Silver.- Thallium.- Tin.- Tungsten.- Uranium.- Vanadium.- Glossary of Specialized Terms.- Index.

1,684 citations