scispace - formally typeset
Search or ask a question
Author

Paul M. Davis

Other affiliations: University of Cambridge
Bio: Paul M. Davis is an academic researcher from University of California, Los Angeles. The author has contributed to research in topics: Lithosphere & Asthenosphere. The author has an hindex of 37, co-authored 111 publications receiving 4796 citations. Previous affiliations of Paul M. Davis include University of Cambridge.


Papers
More filters
Journal ArticleDOI
23 Oct 2003-Nature
TL;DR: It is suggested that the height of, and tectonics in, the Andes are strongly controlled both by shear stresses along the plate interface in the subduction zone and by buoyancy stress contrasts between the trench and highlands.
Abstract: Causal links between the rise of a large mountain range and climate have often been considered to work in one direction, with significant uplift provoking climate change. Here we propose a mechanism by which Cenozoic climate change could have caused the rise of the Andes. Based on considerations of the force balance in the South American lithosphere, we suggest that the height of, and tectonics in, the Andes are strongly controlled both by shear stresses along the plate interface in the subduction zone and by buoyancy stress contrasts between the trench and highlands, and shear stresses in the subduction zone depend on the amount of subducted sediments. We propose that the dynamics of subduction and mountain-building in this region are controlled by the processes of erosion and sediment deposition, and ultimately climate. In central South America, climate-controlled sediment starvation would then cause high shear stress, focusing the plate boundary stresses that support the high Andes.

431 citations

Journal ArticleDOI
TL;DR: In this article, an analytic expression for the deformation field resulting from the inflation of a finite prolate spheroidal cavity in an infinite elastic medium is given, which is equivalent to that generated by a parabolic distribution of double forces and centers of dilatation along the sphroid generator.
Abstract: Exact analytic expressions are given for the deformation field resulting from inflation of a finite prolate spheroidal cavity in an infinite elastic medium. The field is equivalent to that generated by a parabolic distribution of double forces and centers of dilatation along the spheroid generator. Approximate, but quite accurate, solutions for a dipping spheroid in an elastic half-space are found using the half-space double force and center of dilatation solutions. We compare results of the surface deformation field with those generated by the point source ellipsoidal model of Davis (1986). In the far field both models give identical results. In the near field the finite model must be used to calculate displacements and stresses within the medium. We also test the limits of applicability of the finite model as it approaches the surface by comparing the surface displacement field from a vertical spheroid with that calculated from the finite element method. We find the model gives a satisfactory approximation to the finite element results when the minimum radius of curvature of the upper surface is less than or equal to its depth beneath the free surface. Comparison of surface displacements generated by the point and finite element models gives good agreement, provided this criterion is satisfied. We have used the finite model to invert deformation data from Kilauea volcano, Hawaii. The results, which compare favorably with those obtained from the point ellipsoid model, can be used to estimate the distribution of stresses within the volcano in the near field of the source.

391 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reported that the subducting Cocos Plate beneath central Mexico is horizontal, and tectonically underplates the base of the crust for a distance of 250 km from the trench.
Abstract: [1] Based on analysis of data from a trans-Mexico temporary broadband seismic network centered on Mexico City, we report that the subducting Cocos Plate beneath central Mexico is horizontal, and tectonically underplates the base of the crust for a distance of 250 km from the trench. It is decoupled from the crust by a very thin low viscosity zone. The plate plunges into the mantle near Mexico City but is truncated at a depth of 500 km, probably due to an E-W propagating tear in the Cocos slab. Unlike the shallow slab subduction in Peru and Chile, there is active volcanism along the Trans Mexican Volcanic Belt (TMVB) that lies much further inland than regions to either side where subduction dip is not horizontal. Geodynamical modeling indicates that a thin weak layer such as imaged by the seismic experiment can explain the flat subduction

279 citations

Journal ArticleDOI
Philippe Lognonné1, Philippe Lognonné2, William B. Banerdt3, William T. Pike4, Domenico Giardini5, U. R. Christensen6, Raphaël F. Garcia7, Taichi Kawamura1, Sharon Kedar3, Brigitte Knapmeyer-Endrun8, Ludovic Margerin9, Francis Nimmo10, Mark P. Panning3, Benoit Tauzin11, John-Robert Scholz6, Daniele Antonangeli12, S. Barkaoui1, Eric Beucler13, Felix Bissig5, Nienke Brinkman5, Marie Calvet9, Savas Ceylan5, Constantinos Charalambous4, Paul M. Davis14, M. van Driel5, Mélanie Drilleau1, Lucile Fayon, Rakshit Joshi6, B. Kenda1, Amir Khan5, Amir Khan15, Martin Knapmeyer16, Vedran Lekic17, J. B. McClean4, David Mimoun7, Naomi Murdoch7, Lu Pan11, Clément Perrin1, Baptiste Pinot7, L. Pou10, Sabrina Menina1, Sebastien Rodriguez1, Sebastien Rodriguez2, Cedric Schmelzbach5, Nicholas Schmerr17, David Sollberger5, Aymeric Spiga18, Aymeric Spiga2, Simon Stähler5, Alexander E. Stott4, Eléonore Stutzmann1, Saikiran Tharimena3, Rudolf Widmer-Schnidrig19, Fredrik Andersson5, Veronique Ansan13, Caroline Beghein14, Maren Böse5, Ebru Bozdag20, John Clinton5, Ingrid Daubar3, Pierre Delage21, Nobuaki Fuji1, Matthew P. Golombek3, Matthias Grott22, Anna Horleston23, K. Hurst3, Jessica C. E. Irving24, A. Jacob1, Jörg Knollenberg16, S. Krasner3, C. Krause16, Ralph D. Lorenz25, Chloé Michaut2, Chloé Michaut26, Robert Myhill23, Tarje Nissen-Meyer27, J. ten Pierick5, Ana-Catalina Plesa16, C. Quantin-Nataf11, Johan O. A. Robertsson5, L. Rochas28, Martin Schimmel, Sue Smrekar3, Tilman Spohn16, Tilman Spohn29, Nicholas A Teanby23, Jeroen Tromp24, J. Vallade28, Nicolas Verdier28, Christos Vrettos30, Renee Weber31, Don Banfield32, E. Barrett3, M. Bierwirth6, S. B. Calcutt27, Nicolas Compaire7, Catherine L. Johnson33, Catherine L. Johnson34, Davor Mance5, Fabian Euchner5, L. Kerjean28, Guenole Mainsant7, Antoine Mocquet13, J. A Rodriguez Manfredi35, Gabriel Pont28, Philippe Laudet28, T. Nebut1, S. de Raucourt1, O. Robert1, Christopher T. Russell14, A. Sylvestre-Baron28, S. Tillier1, Tristram Warren27, Mark A. Wieczorek18, C. Yana28, Peter Zweifel5 
TL;DR: In this paper, the authors measured the crustal diffusivity and intrinsic attenuation using multiscattering analysis and found that seismic attenuation is about three times larger than on the Moon, which suggests that the crust contains small amounts of volatiles.
Abstract: Mars’s seismic activity and noise have been monitored since January 2019 by the seismometer of the InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) lander. At night, Mars is extremely quiet; seismic noise is about 500 times lower than Earth’s microseismic noise at periods between 4 s and 30 s. The recorded seismic noise increases during the day due to ground deformations induced by convective atmospheric vortices and ground-transferred wind-generated lander noise. Here we constrain properties of the crust beneath InSight, using signals from atmospheric vortices and from the hammering of InSight’s Heat Flow and Physical Properties (HP3) instrument, as well as the three largest Marsquakes detected as of September 2019. From receiver function analysis, we infer that the uppermost 8–11 km of the crust is highly altered and/or fractured. We measure the crustal diffusivity and intrinsic attenuation using multiscattering analysis and find that seismic attenuation is about three times larger than on the Moon, which suggests that the crust contains small amounts of volatiles. The crust beneath the InSight lander on Mars is altered or fractured to 8–11 km depth and may bear volatiles, according to an analysis of seismic noise and wave scattering recorded by InSight’s seismometer.

221 citations

Journal ArticleDOI
TL;DR: In this article, the authors used Eshelby's elastic inclusion theory and Mindlin's half-space point force solution to estimate surface displacements due to fluid inflation of an arbitrarily oriented ellipsoidal cavity in an elastic half space.
Abstract: Approximate expressions for surface displacements due to fluid inflation of an arbitrarily oriented ellipsoidal cavity in an elastic half-space are found using Eshelby's elastic inclusion theory and Mindlin's half-space point force solution. The cavity is replaced by material having the same properties as the surrounding medium. The point force distribution on its surface is determined which exerts a uniform pressure on the medium immediately outside its boundary. Then the ellipsoid and its forces may be removed and replaced by material strained to generate the same pressure without affecting the solution in the remainder of the medium. The half-space point force solutions were found which satisfy boundary conditions exactly on the free surface but approximately on the ellipsoid. The approximation becomes exact for a deeply buried ellipsoid and is reasonably accurate if the depth to its center is greater than twice its dimension. The far-field solution is a weighted combination of displacements from nine double forces located at the ellipsoid center. The model was applied to measured displacement on Kilauea volcano taken over a period of intrusion and eruption, with the result that a vertically elongated ellipsoidal pressure center fits the data significantly better than a spherical one. However, earthquake swarm activity spread over the zone during the inflation episode, which demonstrates that the medium does not respond elastically. The volume of the slip found by summing seismic moments is of the same order as the surface uplift, suggesting that anelastic accommodation of the intruded material by the surrounding medium is significant. The pressure center is therefore a combination of magma pressure and failed matrix. Its vertical elongation confirms the contention that vertical elongation is expected when the volcano undergoes extreme stressing beyond the elastic limit.

221 citations


Cited by
More filters
Book
08 Jul 2008
TL;DR: This survey covers techniques and approaches that promise to directly enable opinion-oriented information-seeking systems and focuses on methods that seek to address the new challenges raised by sentiment-aware applications, as compared to those that are already present in more traditional fact-based analysis.
Abstract: An important part of our information-gathering behavior has always been to find out what other people think. With the growing availability and popularity of opinion-rich resources such as online review sites and personal blogs, new opportunities and challenges arise as people now can, and do, actively use information technologies to seek out and understand the opinions of others. The sudden eruption of activity in the area of opinion mining and sentiment analysis, which deals with the computational treatment of opinion, sentiment, and subjectivity in text, has thus occurred at least in part as a direct response to the surge of interest in new systems that deal directly with opinions as a first-class object. This survey covers techniques and approaches that promise to directly enable opinion-oriented information-seeking systems. Our focus is on methods that seek to address the new challenges raised by sentiment-aware applications, as compared to those that are already present in more traditional fact-based analysis. We include material on summarization of evaluative text and on broader issues regarding privacy, manipulation, and economic impact that the development of opinion-oriented information-access services gives rise to. To facilitate future work, a discussion of available resources, benchmark datasets, and evaluation campaigns is also provided.

7,452 citations

01 Jan 1980
TL;DR: In this article, the influence of diet on the distribution of nitrogen isotopes in animals was investigated by analyzing animals grown in the laboratory on diets of constant nitrogen isotopic composition and found that the variability of the relationship between the δ^(15)N values of animals and their diets is greater for different individuals raised on the same diet than for the same species raised on different diets.
Abstract: The influence of diet on the distribution of nitrogen isotopes in animals was investigated by analyzing animals grown in the laboratory on diets of constant nitrogen isotopic composition. The isotopic composition of the nitrogen in an animal reflects the nitrogen isotopic composition of its diet. The δ^(15)N values of the whole bodies of animals are usually more positive than those of their diets. Different individuals of a species raised on the same diet can have significantly different δ^(15)N values. The variability of the relationship between the δ^(15)N values of animals and their diets is greater for different species raised on the same diet than for the same species raised on different diets. Different tissues of mice are also enriched in ^(15)N relative to the diet, with the difference between the δ^(15)N values of a tissue and the diet depending on both the kind of tissue and the diet involved. The δ^(15)N values of collagen and chitin, biochemical components that are often preserved in fossil animal remains, are also related to the δ^(15)N value of the diet. The dependence of the δ^(15)N values of whole animals and their tissues and biochemical components on the δ^(15)N value of diet indicates that the isotopic composition of animal nitrogen can be used to obtain information about an animal's diet if its potential food sources had different δ^(15)N values. The nitrogen isotopic method of dietary analysis probably can be used to estimate the relative use of legumes vs non-legumes or of aquatic vs terrestrial organisms as food sources for extant and fossil animals. However, the method probably will not be applicable in those modern ecosystems in which the use of chemical fertilizers has influenced the distribution of nitrogen isotopes in food sources. The isotopic method of dietary analysis was used to reconstruct changes in the diet of the human population that occupied the Tehuacan Valley of Mexico over a 7000 yr span. Variations in the δ^(15)C and δ^(15)N values of bone collagen suggest that C_4 and/or CAM plants (presumably mostly corn) and legumes (presumably mostly beans) were introduced into the diet much earlier than suggested by conventional archaeological analysis.

5,548 citations

Journal ArticleDOI
TL;DR: A review of the geologic history of the Himalayan-Tibetan orogen suggests that at least 1400 km of north-south shortening has been absorbed by the orogen since the onset of the Indo-Asian collision at about 70 Ma as discussed by the authors.
Abstract: A review of the geologic history of the Himalayan-Tibetan orogen suggests that at least 1400 km of north-south shortening has been absorbed by the orogen since the onset of the Indo-Asian collision at about 70 Ma. Significant crustal shortening, which leads to eventual construction of the Cenozoic Tibetan plateau, began more or less synchronously in the Eocene (50–40 Ma) in the Tethyan Himalaya in the south, and in the Kunlun Shan and the Qilian Shan some 1000–1400 km in the north. The Paleozoic and Mesozoic tectonic histories in the Himalayan-Tibetan orogen exerted a strong control over the Cenozoic strain history and strain distribution. The presence of widespread Triassic flysch complex in the Songpan-Ganzi-Hoh Xil and the Qiangtang terranes can be spatially correlated with Cenozoic volcanism and thrusting in central Tibet. The marked difference in seismic properties of the crust and the upper mantle between southern and central Tibet is a manifestation of both Mesozoic and Cenozoic tectonics. The form...

4,494 citations

Journal ArticleDOI
TL;DR: In this paper, a suite of closed analytical expressions for the surface displacements, strains, and tilts due to inclined shear and tensile faults in a half-space for both point and finite rectangular sources are presented.
Abstract: A complete suite of closed analytical expressions is presented for the surface displacements, strains, and tilts due to inclined shear and tensile faults in a half-space for both point and finite rectangular sources. These expressions are particularly compact and free from field singular points which are inherent in the previously stated expressions of certain cases. The expressions derived here represent powerful tools not only for the analysis of static field changes associated with earthquake occurrence but also for the modeling of deformation fields arising from fluid-driven crack sources.

4,057 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the use of radar interferometry to measure changes in the Earth's surface has exploded in the early 1990s, and a practical summary explains the techniques for calculating and manipulating interferograms from various radar instruments, including the four satellites currently in orbit: ERS-1, ERS2, JERS-1 and RADARSAT.
Abstract: Geophysical applications of radar interferometry to measure changes in the Earth's surface have exploded in the early 1990s. This new geodetic technique calculates the interference pattern caused by the difference in phase between two images acquired by a spaceborne synthetic aperture radar at two distinct times. The resulting interferogram is a contour map of the change in distance between the ground and the radar instrument. These maps provide an unsurpassed spatial sampling density (∼100 pixels km−2), a competitive precision (∼1 cm), and a useful observation cadence (1 pass month−1). They record movements in the crust, perturbations in the atmosphere, dielectric modifications in the soil, and relief in the topography. They are also sensitive to technical effects, such as relative variations in the radar's trajectory or variations in its frequency standard. We describe how all these phenomena contribute to an interferogram. Then a practical summary explains the techniques for calculating and manipulating interferograms from various radar instruments, including the four satellites currently in orbit: ERS-1, ERS-2, JERS-1, and RADARSAT. The next chapter suggests some guidelines for interpreting an interferogram as a geophysical measurement: respecting the limits of the technique, assessing its uncertainty, recognizing artifacts, and discriminating different types of signal. We then review the geophysical applications published to date, most of which study deformation related to earthquakes, volcanoes, and glaciers using ERS-1 data. We also show examples of monitoring natural hazards and environmental alterations related to landslides, subsidence, and agriculture. In addition, we consider subtler geophysical signals such as postseismic relaxation, tidal loading of coastal areas, and interseismic strain accumulation. We conclude with our perspectives on the future of radar interferometry. The objective of the review is for the reader to develop the physical understanding necessary to calculate an interferogram and the geophysical intuition necessary to interpret it.

2,319 citations