scispace - formally typeset
Search or ask a question
Author

Paul Newman

Bio: Paul Newman is an academic researcher from University of Oxford. The author has contributed to research in topics: Radar & Mobile robot. The author has an hindex of 59, co-authored 278 publications receiving 18608 citations. Previous affiliations of Paul Newman include University of Sydney & Carnegie Mellon University.


Papers
More filters
Journal ArticleDOI
01 Jun 2001
TL;DR: The paper proves that a solution to the SLAM problem is indeed possible and discusses a number of key issues raised by the solution including suboptimal map-building algorithms and map management.
Abstract: The simultaneous localization and map building (SLAM) problem asks if it is possible for an autonomous vehicle to start in an unknown location in an unknown environment and then to incrementally build a map of this environment while simultaneously using this map to compute absolute vehicle location. Starting from estimation-theoretic foundations of this problem, the paper proves that a solution to the SLAM problem is indeed possible. The underlying structure of the SLAM problem is first elucidated. A proof that the estimated map converges monotonically to a relative map with zero uncertainty is then developed. It is then shown that the absolute accuracy of the map and the vehicle location reach a lower bound defined only by the initial vehicle uncertainty. Together, these results show that it is possible for an autonomous vehicle to start in an unknown location in an unknown environment and, using relative observations only, incrementally build a perfect map of the world and to compute simultaneously a bounded estimate of vehicle location. The paper also describes a substantial implementation of the SLAM algorithm on a vehicle operating in an outdoor environment using millimeter-wave radar to provide relative map observations. This implementation is used to demonstrate how some key issues such as map management and data association can be handled in a practical environment. The results obtained are cross-compared with absolute locations of the map landmarks obtained by surveying. In conclusion, the paper discusses a number of key issues raised by the solution to the SLAM problem including suboptimal map-building algorithms and map management.

2,834 citations

Journal ArticleDOI
TL;DR: A probabilistic approach to the problem of recognizing places based on their appearance that can determine that a new observation comes from a previously unseen place, and so augment its map, and is particularly suitable for online loop closure detection in mobile robotics.
Abstract: This paper describes a probabilistic approach to the problem of recognizing places based on their appearance. The system we present is not limited to localization, but can determine that a new observation comes from a previously unseen place, and so augment its map. Effectively this is a SLAM system in the space of appearance. Our probabilistic approach allows us to explicitly account for perceptual aliasing in the environment—identical but indistinctive observations receive a low probability of having come from the same place. We achieve this by learning a generative model of place appearance. By partitioning the learning problem into two parts, new place models can be learned online from only a single observation of a place. The algorithm complexity is linear in the number of places in the map, and is particularly suitable for online loop closure detection in mobile robotics.

1,582 citations

Journal ArticleDOI
TL;DR: By frequently traversing the same route over the period of a year, this dataset enables research investigating long-term localization and mapping for autonomous vehicles in real-world, dynamic urban environments to be investigated.
Abstract: We present a challenging new dataset for autonomous driving: the Oxford RobotCar Dataset. Over the period of May 2014 to December 2015 we traversed a route through central Oxford twice a week on av...

1,285 citations

Journal ArticleDOI
TL;DR: A survey of the visual place recognition research landscape is presented, introducing the concepts behind place recognition, how a “place” is defined in a robotics context, and the major components of a place recognition system.
Abstract: Visual place recognition is a challenging problem due to the vast range of ways in which the appearance of real-world places can vary. In recent years, improvements in visual sensing capabilities, an ever-increasing focus on long-term mobile robot autonomy, and the ability to draw on state-of-the-art research in other disciplines—particularly recognition in computer vision and animal navigation in neuroscience—have all contributed to significant advances in visual place recognition systems. This paper presents a survey of the visual place recognition research landscape. We start by introducing the concepts behind place recognition—the role of place recognition in the animal kingdom, how a “place” is defined in a robotics context, and the major components of a place recognition system. Long-term robot operations have revealed that changing appearance can be a significant factor in visual place recognition failure; therefore, we discuss how place recognition solutions can implicitly or explicitly account for appearance change within the environment. Finally, we close with a discussion on the future of visual place recognition, in particular with respect to the rapid advances being made in the related fields of deep learning, semantic scene understanding, and video description.

933 citations

Journal ArticleDOI
TL;DR: A new formulation of appearance-only SLAM suitable for very large scale place recognition that incorporates robustness against perceptual aliasing and substantially outperforms the standard term-frequency inverse-document-frequency (tf-idf) ranking measure.
Abstract: We describe a new formulation of appearance-only SLAM suitable for very large scale place recognition. The system navigates in the space of appearance, assigning each new observation to either a new or a previously visited location, without reference to metric position. The system is demonstrated performing reliable online appearance mapping and loop-closure detection over a 1000 km trajectory, with mean filter update times of 14 ms. The scalability of the system is achieved by defining a sparse approximation to the FAB-MAP model suitable for implementation using an inverted index. Our formulation of the problem is fully probabilistic and naturally incorporates robustness against perceptual aliasing. We also demonstrate that the approach substantially outperforms the standard term-frequency inverse-document-frequency (tf-idf) ranking measure. The 1000 km data set comprising almost a terabyte of omni-directional and stereo imagery is available for use, and we hope that it will serve as a benchmark for future systems.

661 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Proceedings ArticleDOI
16 Jun 2012
TL;DR: The autonomous driving platform is used to develop novel challenging benchmarks for the tasks of stereo, optical flow, visual odometry/SLAM and 3D object detection, revealing that methods ranking high on established datasets such as Middlebury perform below average when being moved outside the laboratory to the real world.
Abstract: Today, visual recognition systems are still rarely employed in robotics applications. Perhaps one of the main reasons for this is the lack of demanding benchmarks that mimic such scenarios. In this paper, we take advantage of our autonomous driving platform to develop novel challenging benchmarks for the tasks of stereo, optical flow, visual odometry/SLAM and 3D object detection. Our recording platform is equipped with four high resolution video cameras, a Velodyne laser scanner and a state-of-the-art localization system. Our benchmarks comprise 389 stereo and optical flow image pairs, stereo visual odometry sequences of 39.2 km length, and more than 200k 3D object annotations captured in cluttered scenarios (up to 15 cars and 30 pedestrians are visible per image). Results from state-of-the-art algorithms reveal that methods ranking high on established datasets such as Middlebury perform below average when being moved outside the laboratory to the real world. Our goal is to reduce this bias by providing challenging benchmarks with novel difficulties to the computer vision community. Our benchmarks are available online at: www.cvlibs.net/datasets/kitti

11,283 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Proceedings ArticleDOI
01 Jun 2016
TL;DR: This work introduces Cityscapes, a benchmark suite and large-scale dataset to train and test approaches for pixel-level and instance-level semantic labeling, and exceeds previous attempts in terms of dataset size, annotation richness, scene variability, and complexity.
Abstract: Visual understanding of complex urban street scenes is an enabling factor for a wide range of applications. Object detection has benefited enormously from large-scale datasets, especially in the context of deep learning. For semantic urban scene understanding, however, no current dataset adequately captures the complexity of real-world urban scenes. To address this, we introduce Cityscapes, a benchmark suite and large-scale dataset to train and test approaches for pixel-level and instance-level semantic labeling. Cityscapes is comprised of a large, diverse set of stereo video sequences recorded in streets from 50 different cities. 5000 of these images have high quality pixel-level annotations, 20 000 additional images have coarse annotations to enable methods that leverage large volumes of weakly-labeled data. Crucially, our effort exceeds previous attempts in terms of dataset size, annotation richness, scene variability, and complexity. Our accompanying empirical study provides an in-depth analysis of the dataset characteristics, as well as a performance evaluation of several state-of-the-art approaches based on our benchmark.

7,547 citations

Journal ArticleDOI
TL;DR: A novel dataset captured from a VW station wagon for use in mobile robotics and autonomous driving research, using a variety of sensor modalities such as high-resolution color and grayscale stereo cameras and a high-precision GPS/IMU inertial navigation system.
Abstract: We present a novel dataset captured from a VW station wagon for use in mobile robotics and autonomous driving research. In total, we recorded 6 hours of traffic scenarios at 10-100 Hz using a variety of sensor modalities such as high-resolution color and grayscale stereo cameras, a Velodyne 3D laser scanner and a high-precision GPS/IMU inertial navigation system. The scenarios are diverse, capturing real-world traffic situations, and range from freeways over rural areas to inner-city scenes with many static and dynamic objects. Our data is calibrated, synchronized and timestamped, and we provide the rectified and raw image sequences. Our dataset also contains object labels in the form of 3D tracklets, and we provide online benchmarks for stereo, optical flow, object detection and other tasks. This paper describes our recording platform, the data format and the utilities that we provide.

7,153 citations