scispace - formally typeset
Search or ask a question
Author

Paul R. Duffy

Bio: Paul R. Duffy is an academic researcher from University of Toronto. The author has contributed to research in topics: Bronze Age & Cist. The author has an hindex of 10, co-authored 25 publications receiving 1273 citations. Previous affiliations of Paul R. Duffy include Columbia University & University of Michigan.
Topics: Bronze Age, Cist, Prehistory, Population, Hierarchy

Papers
More filters
Journal ArticleDOI
11 Jun 2015-Nature
TL;DR: It is shown that the Bronze Age was a highly dynamic period involving large-scale population migrations and replacements, responsible for shaping major parts of present-day demographic structure in both Europe and Asia.
Abstract: The Bronze Age of Eurasia (around 3000-1000 BC) was a period of major cultural changes. However, there is debate about whether these changes resulted from the circulation of ideas or from human migrations, potentially also facilitating the spread of languages and certain phenotypic traits. We investigated this by using new, improved methods to sequence low-coverage genomes from 101 ancient humans from across Eurasia. We show that the Bronze Age was a highly dynamic period involving large-scale population migrations and replacements, responsible for shaping major parts of present-day demographic structure in both Europe and Asia. Our findings are consistent with the hypothesized spread of Indo-European languages during the Early Bronze Age. We also demonstrate that light skin pigmentation in Europeans was already present at high frequency in the Bronze Age, but not lactose tolerance, indicating a more recent onset of positive selection on lactose tolerance than previously thought.

1,088 citations

Journal ArticleDOI
TL;DR: In this article, a cross-cultural approach that focuses on the occurrence of enclosures and fortifications over the long term at the continental scale is proposed. But the approach is limited to the case of the Neolithic and Bronze Age in Europe.
Abstract: This article reviews recent research into the archaeological interpretation and investigation of fortifications and enclosures during the Neolithic and Bronze Age in Europe. Recent methodological, technological, and cultural developments have expanded our understanding of the temporal, spatial, and formal variability of these features on the landscape. Interpretations of this variability also have varied with different theoretical trends in the discipline. We advocate a cross-cultural approach that focuses on the occurrence of enclosures and fortifications over the long term at the continental scale. Such a macroscalar approach complements interpretive frameworks at the regional and microregional scales. The geographic and temporal distribution of these features indicates that social institutions associated with principles of segmentation and substitutability became formalized and tethered to the landscape during the Neolithic.

77 citations

Journal ArticleDOI
TL;DR: An integration of geophysical surveys, ground hyperspectral data, aerial photographs and high resolution satellite imagery for supporting archaeological investigations at the multi-component Vesztő-Magor Tell, located in the southeastern Great Hungarian Plain, is presented in this article.

67 citations

Journal ArticleDOI
17 Jan 2014-PLOS ONE
TL;DR: Qualitative guidelines to inform sample size and sample spacing for future soil studies are developed, and semivariance structures from 10 of the 12-dominant soil orders across the US were estimated, advancing continental-scale understanding of soil behavior.
Abstract: Soils are highly variable at many spatial scales, which makes designing studies to accurately estimate the mean value of soil properties across space challenging. The spatial correlation structure is critical to develop robust sampling strategies (e.g., sample size and sample spacing). Current guidelines for designing studies recommend conducting preliminary investigation(s) to characterize this structure, but are rarely followed and sampling designs are often defined by logistics rather than quantitative considerations. The spatial variability of soils was assessed across ∼1 ha at 60 sites. Sites were chosen to represent key US ecosystems as part of a scaling strategy deployed by the National Ecological Observatory Network. We measured soil temperature (Ts) and water content (SWC) because these properties mediate biological/biogeochemical processes below- and above-ground, and quantified spatial variability using semivariograms to estimate spatial correlation. We developed quantitative guidelines to inform sample size and sample spacing for future soil studies, e.g., 20 samples were sufficient to measure Ts to within 10% of the mean with 90% confidence at every temperate and sub-tropical site during the growing season, whereas an order of magnitude more samples were needed to meet this accuracy at some high-latitude sites. SWC was significantly more variable than Ts at most sites, resulting in at least 10× more SWC samples needed to meet the same accuracy requirement. Previous studies investigated the relationship between the mean and variability (i.e., sill) of SWC across space at individual sites across time and have often (but not always) observed the variance or standard deviation peaking at intermediate values of SWC and decreasing at low and high SWC. Finally, we quantified how far apart samples must be spaced to be statistically independent. Semivariance structures from 10 of the 12-dominant soil orders across the US were estimated, advancing our continental-scale understanding of soil behavior.

60 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Some of the key events in the peopling of the world in the light of the findings of work on ancient DNA are reviewed.
Abstract: Ancient DNA research is revealing a human history far more complex than that inferred from parsimonious models based on modern DNA. Here, we review some of the key events in the peopling of the world in the light of the findings of work on ancient DNA.

1,365 citations

Journal ArticleDOI
24 Dec 2015-Nature
TL;DR: A genome-wide scan for selection using ancient DNA is reported, capitalizing on the largest ancient DNA data set yet assembled: 230 West Eurasians who lived between 6500 and 300 bc, including 163 with newly reported data.
Abstract: Ancient DNA makes it possible to observe natural selection directly by analysing samples from populations before, during and after adaptation events. Here we report a genome-wide scan for selection using ancient DNA, capitalizing on the largest ancient DNA data set yet assembled: 230 West Eurasians who lived between 6500 and 300 bc, including 163 with newly reported data. The new samples include, to our knowledge, the first genome-wide ancient DNA from Anatolian Neolithic farmers, whose genetic material we obtained by extracting from petrous bones, and who we show were members of the population that was the source of Europe's first farmers. We also report a transect of the steppe region in Samara between 5600 and 300 bc, which allows us to identify admixture into the steppe from at least two external sources. We detect selection at loci associated with diet, pigmentation and immunity, and two independent episodes of selection on height.

1,083 citations

Journal ArticleDOI
25 Aug 2016-Nature
TL;DR: This paper reported genome-wide ancient DNA from 44 ancient Near Easterners ranging in time between ~12,000 and 1,400 bc, from Natufian hunter-gatherers to Bronze Age farmers, showing that the earliest populations of the Near East derived around half their ancestry from a 'Basal Eurasian' lineage that had little if any Neanderthal admixture and that separated from other non-African lineages before their separation from each other.
Abstract: We report genome-wide ancient DNA from 44 ancient Near Easterners ranging in time between ~12,000 and 1,400 bc, from Natufian hunter–gatherers to Bronze Age farmers. We show that the earliest populations of the Near East derived around half their ancestry from a ‘Basal Eurasian’ lineage that had little if any Neanderthal admixture and that separated from other non-African lineages before their separation from each other. The first farmers of the southern Levant (Israel and Jordan) and Zagros Mountains (Iran) were strongly genetically differentiated, and each descended from local hunter–gatherers. By the time of the Bronze Age, these two populations and Anatolian-related farmers had mixed with each other and with the hunter–gatherers of Europe to greatly reduce genetic differentiation. The impact of the Near Eastern farmers extended beyond the Near East: farmers related to those of Anatolia spread westward into Europe; farmers related to those of the Levant spread southward into East Africa; farmers related to those of Iran spread northward into the Eurasian steppe; and people related to both the early farmers of Iran and to the pastoralists of the Eurasian steppe spread eastward into South Asia.

695 citations

Journal ArticleDOI
Iñigo Olalde1, Selina Brace2, Morten E. Allentoft3, Ian Armit4  +166 moreInstitutions (69)
08 Mar 2018-Nature
TL;DR: Genome-wide data from 400 Neolithic, Copper Age and Bronze Age Europeans is presented, finding limited genetic affinity between Beaker-complex-associated individuals from Iberia and central Europe, and excludes migration as an important mechanism of spread between these two regions.
Abstract: From around 2750 to 2500 bc, Bell Beaker pottery became widespread across western and central Europe, before it disappeared between 2200 and 1800 bc. The forces that propelled its expansion are a matter of long-standing debate, and there is support for both cultural diffusion and migration having a role in this process. Here we present genome-wide data from 400 Neolithic, Copper Age and Bronze Age Europeans, including 226 individuals associated with Beaker-complex artefacts. We detected limited genetic affinity between Beaker-complex-associated individuals from Iberia and central Europe, and thus exclude migration as an important mechanism of spread between these two regions. However, migration had a key role in the further dissemination of the Beaker complex. We document this phenomenon most clearly in Britain, where the spread of the Beaker complex introduced high levels of steppe-related ancestry and was associated with the replacement of approximately 90% of Britain's gene pool within a few hundred years, continuing the east-to-west expansion that had brought steppe-related ancestry into central and northern Europe over the previous centuries.

479 citations