scispace - formally typeset
Search or ask a question
Author

Paul R. Jensen

Bio: Paul R. Jensen is an academic researcher from University of California, San Diego. The author has contributed to research in topics: Salinispora arenicola & Streptomyces. The author has an hindex of 77, co-authored 269 publications receiving 20187 citations. Previous affiliations of Paul R. Jensen include University of California & Cornell University.


Papers
More filters
Journal ArticleDOI
Mingxun Wang1, Jeremy Carver1, Vanessa V. Phelan2, Laura M. Sanchez2, Neha Garg2, Yao Peng1, Don D. Nguyen1, Jeramie D. Watrous2, Clifford A. Kapono1, Tal Luzzatto-Knaan2, Carla Porto2, Amina Bouslimani2, Alexey V. Melnik2, Michael J. Meehan2, Wei-Ting Liu3, Max Crüsemann4, Paul D. Boudreau4, Eduardo Esquenazi, Mario Sandoval-Calderón5, Roland D. Kersten6, Laura A. Pace2, Robert A. Quinn7, Katherine R. Duncan8, Cheng-Chih Hsu1, Dimitrios J. Floros1, Ronnie G. Gavilan, Karin Kleigrewe4, Trent R. Northen9, Rachel J. Dutton10, Delphine Parrot11, Erin E. Carlson12, Bertrand Aigle13, Charlotte Frydenlund Michelsen14, Lars Jelsbak14, Christian Sohlenkamp5, Pavel A. Pevzner1, Anna Edlund15, Anna Edlund16, Jeffrey S. McLean16, Jeffrey S. McLean17, Jörn Piel18, Brian T. Murphy19, Lena Gerwick4, Chih-Chuang Liaw20, Yu-Liang Yang21, Hans-Ulrich Humpf22, Maria Maansson14, Robert A. Keyzers23, Amy C. Sims24, Andrew R. Johnson25, Ashley M. Sidebottom25, Brian E. Sedio26, Andreas Klitgaard14, Charles B. Larson4, Charles B. Larson2, Cristopher A. Boya P., Daniel Torres-Mendoza, David Gonzalez2, Denise Brentan Silva27, Denise Brentan Silva28, Lucas Miranda Marques27, Daniel P. Demarque27, Egle Pociute, Ellis C. O’Neill4, Enora Briand4, Enora Briand11, Eric J. N. Helfrich18, Eve A. Granatosky29, Evgenia Glukhov4, Florian Ryffel18, Hailey Houson, Hosein Mohimani1, Jenan J. Kharbush4, Yi Zeng1, Julia A. Vorholt18, Kenji L. Kurita30, Pep Charusanti1, Kerry L. McPhail31, Kristian Fog Nielsen14, Lisa Vuong, Maryam Elfeki19, Matthew F. Traxler32, Niclas Engene33, Nobuhiro Koyama2, Oliver B. Vining31, Ralph S. Baric24, Ricardo Pianta Rodrigues da Silva27, Samantha J. Mascuch4, Sophie Tomasi11, Stefan Jenkins9, Venkat R. Macherla, Thomas Hoffman, Vinayak Agarwal4, Philip G. Williams34, Jingqui Dai34, Ram P. Neupane34, Joshua R. Gurr34, Andrés M. C. Rodríguez27, Anne Lamsa1, Chen Zhang1, Kathleen Dorrestein2, Brendan M. Duggan2, Jehad Almaliti2, Pierre-Marie Allard35, Prasad Phapale, Louis-Félix Nothias36, Theodore Alexandrov, Marc Litaudon36, Jean-Luc Wolfender35, Jennifer E. Kyle37, Thomas O. Metz37, Tyler Peryea38, Dac-Trung Nguyen38, Danielle VanLeer38, Paul Shinn38, Ajit Jadhav38, Rolf Müller, Katrina M. Waters37, Wenyuan Shi16, Xueting Liu39, Lixin Zhang39, Rob Knight1, Paul R. Jensen4, Bernhard O. Palsson1, Kit Pogliano1, Roger G. Linington30, Marcelino Gutiérrez, Norberto Peporine Lopes27, William H. Gerwick4, William H. Gerwick2, Bradley S. Moore2, Bradley S. Moore4, Pieter C. Dorrestein4, Pieter C. Dorrestein2, Nuno Bandeira1, Nuno Bandeira2 
TL;DR: In GNPS, crowdsourced curation of freely available community-wide reference MS libraries will underpin improved annotations and data-driven social-networking should facilitate identification of spectra and foster collaborations.
Abstract: The potential of the diverse chemistries present in natural products (NP) for biotechnology and medicine remains untapped because NP databases are not searchable with raw data and the NP community has no way to share data other than in published papers. Although mass spectrometry (MS) techniques are well-suited to high-throughput characterization of NP, there is a pressing need for an infrastructure to enable sharing and curation of data. We present Global Natural Products Social Molecular Networking (GNPS; http://gnps.ucsd.edu), an open-access knowledge base for community-wide organization and sharing of raw, processed or identified tandem mass (MS/MS) spectrometry data. In GNPS, crowdsourced curation of freely available community-wide reference MS libraries will underpin improved annotations. Data-driven social-networking should facilitate identification of spectra and foster collaborations. We also introduce the concept of 'living data' through continuous reanalysis of deposited data.

2,365 citations

Journal ArticleDOI
TL;DR: The ocean is an overlooked habitat from which to isolate important microorganisms, and the rate of discovery of new biologically active compounds from common soil actino-mycetes has been falling.
Abstract: thus the discovery of a major new group of thesebacteria in marine sediments suggests that the ocean repre-sents an overlooked habitat from which to isolate theseimportant microorganisms. Given thatthe rate of discovery ofnew biologically active compounds from common soil actino-mycetes has been falling,

962 citations

Journal ArticleDOI
TL;DR: The continued development of improved cultivation methods and technologies for accessing deep-sea environments promises to provide access to this significant new source of chemical diversity.
Abstract: Natural products are both a fundamental source of new chemical diversity and an integral component of today's pharmaceutical compendium. Yet interest in natural-product drug discovery has waned, in part owing to diminishing returns from traditional resources such as soil bacteria. The oceans cover 70% of the Earth's surface and harbor most of the planet's biodiversity. Although marine plants and invertebrates have received considerable attention as a resource for natural-product discovery, the microbiological component of this diversity remains relatively unexplored. Recent studies have revealed that select groups of marine actinomycetes are a robust source of new natural products. Members of the genus Salinispora have proven to be a particularly rich source of new chemical structures, including the potent proteasome inhibitor salinosporamide A, and other distinct groups are yielding new classes of terpenoids, amino acid–derived metabolites and polyene macrolides. The continued development of improved cultivation methods and technologies for accessing deep-sea environments promises to provide access to this significant new source of chemical diversity.

756 citations

Journal ArticleDOI
TL;DR: This study presents the first evidence for the existence of widespread populations of obligate marine actinomycetes from ocean sediments, and suggests novelty at the genus level.
Abstract: A major taxon of obligate marine bacteria within the order Actinomycetales has been discovered from ocean sediments. Populations of these bacteria (designated MAR 1) are persistent and widespread, spanning at least three distinct ocean systems. In this study, 212 actinomycete isolates possessing MAR 1 morphologies were examined and all but two displayed an obligate requirement of seawater for growth. Forty-five of these isolates, representing all observed seawater-requiring morphotypes, were partially sequenced and found to share characteristic small-subunit rRNA signature nucleotides between positions 207 and 468 (Escherichia coli numbering). Phylogenetic characterization of seven representative isolates based on almost complete sequences of genes encoding 16S rRNA (16S ribosomal DNA) yielded a monophyletic clade within the family Micromonosporaceae and suggests novelty at the genus level. This is the first evidence for the existence of widespread populations of obligate marine actinomycetes. Organic extracts from cultured members of this new group exhibit remarkable biological activity, suggesting that they represent a prolific resource for biotechnological applications.

584 citations

Journal ArticleDOI
TL;DR: The S. tropica CNB-440 circular genome of Salinispora species was sequenced and analyzed in this paper, which revealed the powerful interplay between genomic analysis and traditional natural product isolation studies.
Abstract: Recent fermentation studies have identified actinomycetes of the marine-dwelling genus Salinispora as prolific natural product producers. To further evaluate their biosynthetic potential, we sequenced the 5,183,331-bp S. tropica CNB-440 circular genome and analyzed all identifiable secondary natural product gene clusters. Our analysis shows that S. tropica dedicates a large percentage of its genome (≈9.9%) to natural product assembly, which is greater than previous Streptomyces genome sequences as well as other natural product-producing actinomycetes. The S. tropica genome features polyketide synthase systems of every known formally classified family, nonribosomal peptide synthetases, and several hybrid clusters. Although a few clusters appear to encode molecules previously identified in Streptomyces species, the majority of the 17 biosynthetic loci are novel. Specific chemical information about putative and observed natural product molecules is presented and discussed. In addition, our bioinformatic analysis not only was critical for the structure elucidation of the polyene macrolactam salinilactam A, but its structural analysis aided the genome assembly of the highly repetitive slm loci. This study firmly establishes the genus Salinispora as a rich source of drug-like molecules and importantly reveals the powerful interplay between genomic analysis and traditional natural product isolation studies.

507 citations


Cited by
More filters
01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

Journal ArticleDOI
Evan Bolyen1, Jai Ram Rideout1, Matthew R. Dillon1, Nicholas A. Bokulich1, Christian C. Abnet2, Gabriel A. Al-Ghalith3, Harriet Alexander4, Harriet Alexander5, Eric J. Alm6, Manimozhiyan Arumugam7, Francesco Asnicar8, Yang Bai9, Jordan E. Bisanz10, Kyle Bittinger11, Asker Daniel Brejnrod7, Colin J. Brislawn12, C. Titus Brown4, Benjamin J. Callahan13, Andrés Mauricio Caraballo-Rodríguez14, John Chase1, Emily K. Cope1, Ricardo Silva14, Christian Diener15, Pieter C. Dorrestein14, Gavin M. Douglas16, Daniel M. Durall17, Claire Duvallet6, Christian F. Edwardson, Madeleine Ernst14, Madeleine Ernst18, Mehrbod Estaki17, Jennifer Fouquier19, Julia M. Gauglitz14, Sean M. Gibbons20, Sean M. Gibbons15, Deanna L. Gibson17, Antonio Gonzalez14, Kestrel Gorlick1, Jiarong Guo21, Benjamin Hillmann3, Susan Holmes22, Hannes Holste14, Curtis Huttenhower23, Curtis Huttenhower24, Gavin A. Huttley25, Stefan Janssen26, Alan K. Jarmusch14, Lingjing Jiang14, Benjamin D. Kaehler27, Benjamin D. Kaehler25, Kyo Bin Kang14, Kyo Bin Kang28, Christopher R. Keefe1, Paul Keim1, Scott T. Kelley29, Dan Knights3, Irina Koester14, Tomasz Kosciolek14, Jorden Kreps1, Morgan G. I. Langille16, Joslynn S. Lee30, Ruth E. Ley31, Ruth E. Ley32, Yong-Xin Liu, Erikka Loftfield2, Catherine A. Lozupone19, Massoud Maher14, Clarisse Marotz14, Bryan D Martin20, Daniel McDonald14, Lauren J. McIver24, Lauren J. McIver23, Alexey V. Melnik14, Jessica L. Metcalf33, Sydney C. Morgan17, Jamie Morton14, Ahmad Turan Naimey1, Jose A. Navas-Molina14, Jose A. Navas-Molina34, Louis-Félix Nothias14, Stephanie B. Orchanian, Talima Pearson1, Samuel L. Peoples35, Samuel L. Peoples20, Daniel Petras14, Mary L. Preuss36, Elmar Pruesse19, Lasse Buur Rasmussen7, Adam R. Rivers37, Michael S. Robeson38, Patrick Rosenthal36, Nicola Segata8, Michael Shaffer19, Arron Shiffer1, Rashmi Sinha2, Se Jin Song14, John R. Spear39, Austin D. Swafford, Luke R. Thompson40, Luke R. Thompson41, Pedro J. Torres29, Pauline Trinh20, Anupriya Tripathi14, Peter J. Turnbaugh10, Sabah Ul-Hasan42, Justin J. J. van der Hooft43, Fernando Vargas, Yoshiki Vázquez-Baeza14, Emily Vogtmann2, Max von Hippel44, William A. Walters31, Yunhu Wan2, Mingxun Wang14, Jonathan Warren45, Kyle C. Weber46, Kyle C. Weber37, Charles H. D. Williamson1, Amy D. Willis20, Zhenjiang Zech Xu14, Jesse R. Zaneveld20, Yilong Zhang47, Qiyun Zhu14, Rob Knight14, J. Gregory Caporaso1 
TL;DR: QIIME 2 development was primarily funded by NSF Awards 1565100 to J.G.C. and R.K.P. and partial support was also provided by the following: grants NIH U54CA143925 and U54MD012388.
Abstract: QIIME 2 development was primarily funded by NSF Awards 1565100 to J.G.C. and 1565057 to R.K. Partial support was also provided by the following: grants NIH U54CA143925 (J.G.C. and T.P.) and U54MD012388 (J.G.C. and T.P.); grants from the Alfred P. Sloan Foundation (J.G.C. and R.K.); ERCSTG project MetaPG (N.S.); the Strategic Priority Research Program of the Chinese Academy of Sciences QYZDB-SSW-SMC021 (Y.B.); the Australian National Health and Medical Research Council APP1085372 (G.A.H., J.G.C., Von Bing Yap and R.K.); the Natural Sciences and Engineering Research Council (NSERC) to D.L.G.; and the State of Arizona Technology and Research Initiative Fund (TRIF), administered by the Arizona Board of Regents, through Northern Arizona University. All NCI coauthors were supported by the Intramural Research Program of the National Cancer Institute. S.M.G. and C. Diener were supported by the Washington Research Foundation Distinguished Investigator Award.

8,821 citations

Journal ArticleDOI
TL;DR: This review covers the literature published in 2014 for marine natural products, with 1116 citations referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms.

4,649 citations

Journal ArticleDOI
TL;DR: Some of the recent advances in flavonoid research are reviewed and the role of anthocyanins and flavones in providing stable blue flower colours in the angiosperms is outlined.

3,465 citations

Journal ArticleDOI
TL;DR: This year's update to the HMDB, HMDB 4.0, represents the most significant upgrade to the database in its history and should greatly enhance its ease of use and its potential applications in nutrition, biochemistry, clinical chemistry, clinical genetics, medicine, and metabolomics science.
Abstract: The Human Metabolome Database or HMDB (www.hmdb.ca) is a web-enabled metabolomic database containing comprehensive information about human metabolites along with their biological roles, physiological concentrations, disease associations, chemical reactions, metabolic pathways, and reference spectra. First described in 2007, the HMDB is now considered the standard metabolomic resource for human metabolic studies. Over the past decade the HMDB has continued to grow and evolve in response to emerging needs for metabolomics researchers and continuing changes in web standards. This year's update, HMDB 4.0, represents the most significant upgrade to the database in its history. For instance, the number of fully annotated metabolites has increased by nearly threefold, the number of experimental spectra has grown by almost fourfold and the number of illustrated metabolic pathways has grown by a factor of almost 60. Significant improvements have also been made to the HMDB's chemical taxonomy, chemical ontology, spectral viewing, and spectral/text searching tools. A great deal of brand new data has also been added to HMDB 4.0. This includes large quantities of predicted MS/MS and GC-MS reference spectral data as well as predicted (physiologically feasible) metabolite structures to facilitate novel metabolite identification. Additional information on metabolite-SNP interactions and the influence of drugs on metabolite levels (pharmacometabolomics) has also been added. Many other important improvements in the content, the interface, and the performance of the HMDB website have been made and these should greatly enhance its ease of use and its potential applications in nutrition, biochemistry, clinical chemistry, clinical genetics, medicine, and metabolomics science.

2,608 citations