scispace - formally typeset
Search or ask a question
Author

Paul R. Julian

Bio: Paul R. Julian is an academic researcher from National Center for Atmospheric Research. The author has contributed to research in topics: Madden–Julian oscillation & Radiosonde. The author has an hindex of 16, co-authored 30 publications receiving 8707 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a very pronounced maximum was noted in the co-spectrum of the 850- and 150-mb zonal wind components in the frequency range 0.0245-0.0190 day−1 (41-53 days period).
Abstract: Nearly ten years of daily rawinsonde data for Canton Island (3S, 172W) have been subjected to spectrum and cross-spectrum analysis. In the course of this analysis a very pronounced maximum was noted in the co-spectrum of the 850- and 150-mb zonal wind components in the frequency range 0.0245–0.0190 day−1 (41–53 days period). Application of a posteriori sampling theory resulted in a significance level of ∼6% (0.1% prior confidence level). This type of significance test is appropriate because no prior evidence or reason existed for expecting such a spectral feature. Subsequent analysis revealed the following structure of the oscillation. Peaks in the variance spectra of the zonal wind are strong in the low troposphere, are weak or non-existent in the 700–400 mb layer, and are strong again in the upper troposphere. No evidence of this feature could be found above 80 mb, or in any of the spectra of the meridional component. The spectrum of station pressure possesses a peak in this frequency range and...

2,995 citations

Journal ArticleDOI
TL;DR: In this article, a long time series (5-10 years) of station pressure and upper air data from stations located in the tropics are subjected to spectral and cross-spectral analysis to investigate the spatial extent of a previously detected oscillation in various variables with a period range of 40-50 days.
Abstract: Long time series (5–10 years) of station pressure and upper air data from stations located in the tropics are subjected to spectral and cross-spectral analysis to investigate the spatial extent of a previously detected oscillation in various variables with a period range of 40–50 days. In addition, time series of station pressure from two tropical stations for the 1890's are examined and indicate that the oscillation is a stationary feature. The cross-spectral analysis suggests that the oscillation is of global scale but restricted to the tropics: it possesses features of an eastward-moving wave whose characteristics change with time. A mean wave disturbance, constructed with data from the IGY, provides additional descriptive material on the spatial and temporal behavior of the oscillation. The manifestation in station pressure consists of anomalies which appear between 10N and 10S in the Indian Ocean region and propagate eastward to the Eastern Pacific. Zonal winds participate in the oscillation...

2,551 citations

Journal ArticleDOI
TL;DR: The 40-50-day cyclone oscillation is the result of large-scale circulation cells oriented in the equatorial plane that move eastward from at least the Indian Ocean to the central Pacific as discussed by the authors.
Abstract: Observational aspects of the 40–50-day oscillation are reviewed. The oscillation is the result of large-scale circulation cells oriented in the equatorial plane that move eastward from at least the Indian Ocean to the central Pacific. Anomalies in zonal winds and the velocity potential in the upper troposphere often propagate the full circumference of the globe. Related, complex convective regions also show an eastward movement. There is a zonally symmetric component to the oscillation. It is manifest in changes in surface pressure and in the relative atmospheric angular momentum. The oscillation is an important factor in the timing of active and break phases of the Indian and Australian monsoons. It affects ocean waves, currents, and air-sea interaction. The oscillation was particularly active during the First GARP (Global Atmospheric Research Program) Global Experiment year, and some features that were evident during the Monsoon Experiment are described.

1,918 citations

Journal ArticleDOI
TL;DR: A major accomplishment of the recently completed Tropical Ocean-Global Atmosphere (TOGA) Program was the development of an ocean observing system to support seasonal-to-interannual climate studies.
Abstract: A major accomplishment of the recently completed Tropical Ocean-Global Atmosphere (TOGA) Program was the development of an ocean observing system to support seasonal-to-interannual climate studies. This paper reviews the scientific motivations for the development of that observing system, the technological advances that made it possible, and the scientific advances that resulted from the availability of a significantly expanded observational database. A primary phenomenological focus of TOGA was interannual variability of the coupled ocean-atmosphere system associated with El Nino and the Southern Oscillation (ENSO).Prior to the start of TOGA, our understanding of the physical processes responsible for the ENSO cycle was limited, our ability to monitor variability in the tropical oceans was primitive, and the capability to predict ENSO was nonexistent. TOGA therefore initiated and/or supported efforts to provide real-time measurements of the following key oceanographic variables: surface winds, sea surface temperature, subsurface temperature, sea level and ocean velocity. Specific in situ observational programs developed to provide these data sets included the Tropical Atmosphere-Ocean (TAO) array of moored buoys in the Pacific, a surface drifting buoy program, an island and coastal tide gauge network, and a volunteer observing ship network of expendable bathythermograph measurements. Complementing these in situ efforts were satellite missions which provided near-global coverage of surface winds, sea surface temperature, and sea level. These new TOGA data sets led to fundamental progress in our understanding of the physical processes responsible for ENSO and to the development of coupled ocean-atmosphere models for ENSO prediction.

1,028 citations

Journal ArticleDOI
TL;DR: A survey of the literature dating back to the early 1920's along with some appropriate statistical studies delineate an atmospheric-oceanic phenomenon of considerable interest as mentioned in this paper, which is known as the Southern Oscillation.
Abstract: A survey of the literature dating back to the early 1920’s along with some appropriate statistical studies delineate an atmospheric-oceanic phenomenon of considerable interest. The Southern Oscillation—an oscillatory exchange of atmospheric mass between the eastern south Pacific and Indonesia—and the Walker Circulation—its counterpart in wind circulation—have a time-scale of years and are manifestations of a near-global variation in circulation, clouds and precipitation, centered in the equatorial eastern Pacific. Ocean surface temperatures in this region are intimately involved; in their warmest phase these variations are known as El Nino events. Some evidence that the strength of the Northern Hemisphere subtropical jet stream varies in conjunction with this phenomenon is given. Since a fully coupled atmosphere-ocean model is presently impractical, a set of general circulation model experiments using altered ocean boundary temperatures has been performed with the NCAR 5° global atmospheric model...

226 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The TRMM Multi-Satellite Precipitation Analysis (TMPA) as discussed by the authors provides a calibration-based sequential scheme for combining precipitation estimates from multiple satellites, as well as gauge analyses where feasible, at fine scales.
Abstract: The Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) provides a calibration-based sequential scheme for combining precipitation estimates from multiple satellites, as well as gauge analyses where feasible, at fine scales (0.25° × 0.25° and 3 hourly). TMPA is available both after and in real time, based on calibration by the TRMM Combined Instrument and TRMM Microwave Imager precipitation products, respectively. Only the after-real-time product incorporates gauge data at the present. The dataset covers the latitude band 50°N–S for the period from 1998 to the delayed present. Early validation results are as follows: the TMPA provides reasonable performance at monthly scales, although it is shown to have precipitation rate–dependent low bias due to lack of sensitivity to low precipitation rates over ocean in one of the input products [based on Advanced Microwave Sounding Unit-B (AMSU-B)]. At finer scales the TMPA is successful at approximately reproducing the s...

6,179 citations

Journal ArticleDOI
TL;DR: The NCEP Climate Forecast System Reanalysis (CFSR) was completed for the 31-yr period from 1979 to 2009, in January 2010 as mentioned in this paper, which was designed and executed as a global, high-resolution coupled atmosphere-ocean-land surface-sea ice system to provide the best estimate of the state of these coupled domains over this period.
Abstract: The NCEP Climate Forecast System Reanalysis (CFSR) was completed for the 31-yr period from 1979 to 2009, in January 2010. The CFSR was designed and executed as a global, high-resolution coupled atmosphere–ocean–land surface–sea ice system to provide the best estimate of the state of these coupled domains over this period. The current CFSR will be extended as an operational, real-time product into the future. New features of the CFSR include 1) coupling of the atmosphere and ocean during the generation of the 6-h guess field, 2) an interactive sea ice model, and 3) assimilation of satellite radiances by the Gridpoint Statistical Interpolation (GSI) scheme over the entire period. The CFSR global atmosphere resolution is ~38 km (T382) with 64 levels extending from the surface to 0.26 hPa. The global ocean's latitudinal spacing is 0.25° at the equator, extending to a global 0.5° beyond the tropics, with 40 levels to a depth of 4737 m. The global land surface model has four soil levels and the global sea ice m...

4,520 citations

Journal ArticleDOI
TL;DR: A weekly 1° spatial resolution optimum interpolation (OI) sea surface temperature (SST) analysis has been produced at the National Oceanic and Atmospheric Administration (NOAA) using both in situ and satellite data from November 1981 to the present as mentioned in this paper.
Abstract: A weekly 1° spatial resolution optimum interpolation (OI) sea surface temperature (SST) analysis has been produced at the National Oceanic and Atmospheric Administration (NOAA) using both in situ and satellite data from November 1981 to the present. The weekly product has been available since 1993 and is widely used for weather and climate monitoring and forecasting. Errors in the satellite bias correction and the sea ice to SST conversion algorithm are discussed, and then an improved version of the OI analysis is developed. The changes result in a modest reduction in the satellite bias that leaves small global residual biases of roughly −0.03°C. The major improvement in the analysis occurs at high latitudes due to the new sea ice algorithm where local differences between the old and new analysis can exceed 1°C. Comparisons with other SST products are needed to determine the consistency of the OI. These comparisons show that the differences among products occur on large time- and space scales wit...

4,346 citations

25 Feb 2004
TL;DR: The instructor's manual to a work which introduces the fundamental principles of meteorology, explaining storm dynamics and the dynamics of climate and its global implications is described in this paper, where the authors present a detailed discussion of the relationship between meteorology and climate.
Abstract: The instructor's manual to a work which introduces the fundamental principles of meteorology, explaining storm dynamics and the dynamics of climate and its global implications.

4,185 citations

Journal ArticleDOI
TL;DR: In this article, a simple analytic model is constructed to elucidate some basic features of the response of the tropical atmosphere to diabatic heating, showing that there is considerable east-west asymmetry which can be illustrated by solutions for heating concentrated in an area of finite extent.
Abstract: A simple analytic model is constructed to elucidate some basic features of the response of the tropical atmosphere to diabatic heating. In particular, there is considerable east-west asymmetry which can be illustrated by solutions for heating concentrated in an area of finite extent. This is of more than academic interest because heating in practice tends to be concentrated in specific areas. For instance, a model with heating symmetric about the equator at Indonesian longitudes produces low-level easterly flow over the Pacific through propagation of Kelvin waves into the region. It also produces low-level westerly inflow over the Indian Ocean (but in a smaller region) because planetary waves propagate there. In the heating region itself the low-level flow is away from the equator as required by the vorticity equation. The return flow toward the equator is farther west because of planetary wave propagation, and so cyclonic flow is obtained around lows which form on the western margins of the heating zone. Another model solution with the heating displaced north of the equator provides a flow similar to the monsoon circulation of July and a simple model solution can also be found for heating concentrated along an inter-tropical convergence line.

3,799 citations