scispace - formally typeset
Search or ask a question
Author

Paul S. Cooke

Bio: Paul S. Cooke is an academic researcher from University of Florida. The author has contributed to research in topics: Estrogen & Estrogen receptor. The author has an hindex of 64, co-authored 164 publications receiving 14148 citations. Previous affiliations of Paul S. Cooke include University of Arkansas System & University of Illinois at Urbana–Champaign.


Papers
More filters
Journal ArticleDOI
TL;DR: Evidence is found that estrogen/ERα signaling is critical in female and male WAT; obesity in αERKO males involves a mechanism of reduced energy expenditure rather than increased energy intake.
Abstract: Estrogen regulates the amount of white adipose tissue (WAT) in females, but its role in males and whether WAT effects involve estrogen receptor-α (ERα) or ERβ were unclear. We analyzed the role of ERα in WAT and brown adipose tissue by comparing these tissues in wild-type (WT) and ERα-knockout (αERKO) male and female mice. Brown adipose tissue weight was similar in αERKO and WT males at all ages. Progressive increases in WAT were seen in αERKO males with advancing age. Epididymal, perirenal, and inguinal WAT weighed 139–185% more in αERKO than in WT males by 270–360 days of age. Epididymal and perirenal adipocyte size was increased 20% in αERKO males. Adipocyte number was 82–168% greater in fat pads of αERKO vs. WT males. Compared with WT, 90-day-old αERKO females had increases in fat pad weights (54–103%), adipocyte size, and number. Both αERKO males and females had insulin resistance and impaired glucose tolerance, similar to humans lacking ERα or aromatase. Energy intake was equal in WT and αERKO males, indicating that obesity was not induced by hyperphagia. In contrast, energy expenditure was reduced by 11% in αERKO compared with WT males, indicating that altered energy expenditure may be important for the observed obesity. In summary, ERα absence causes adipocyte hyperplasia and hypertrophy, insulin resistance, and glucose intolerance in both sexes. These results are evidence that estrogen/ERα signaling is critical in female and male WAT; obesity in αERKO males involves a mechanism of reduced energy expenditure rather than increased energy intake.

1,154 citations

Journal ArticleDOI
TL;DR: The most extensively studied gland of this group is the prostate, which is found exclusively in mammals and produces many components of semen such as fructose, zinc ions, and various proteins important for the formation of the copulatory plug in rodents.
Abstract: I. Introduction MALE accessory sex glands such as the prostate, seminal vesicle, and bulbourethral gland have served in various capacities as models for investigating the action of androgens in regulating epithelial growth, RNA and protein synthesis, and secretory activity. The most extensively studied gland of this group is the prostate. This gland is found exclusively in mammals and produces many components of semen such as fructose, zinc ions, and various proteins important for the formation of the copulatory plug in rodents. The impetus for investigating regulation of prostatic growth and function stems in part from the many pathological complications which affect this gland. The prostate is the site of various types of inflammatory and infectious conditions (1) as well as benign and malignant proliferative changes in aging males. Despite extensive research, little of the pathogenesis or natural history of these diseases has been elucidated (2). Benign prostatic hypertrophy (BPH), a disease in which t...

1,025 citations

Journal ArticleDOI
TL;DR: Two chemicals previously shown to have estrogenic activity, bisphenol A and octylphenol, were examined for their effects on accessory reproductive organs and daily sperm production in male offspring of mice fed these chemicals during pregnancy and it was found that the 2 ng/g dose permanently increased the size of the preputial glands, but reduced thesize of the epididymides.
Abstract: Two chemicals previously shown to have estrogenic activity, bisphenol A and octylphenol, were examined for their effects on accessory reproductive organs and daily sperm production in male offspring of mice fed these chemicals during pregnancy. These chemicals are used in the manufacture of plastics and other products, and have been detected in food and water consumed by animals and people. From gestation day 11-17 female mice were fed an average concentration (dissolved in oil) of bisphenol A or octylphenol of 2 ng/g body weight (2 ppb) and 20 ng/g (20 ppb). The 2 ppb dose of bisphenol A is lower than the amount reported to be swallowed during the first hour after application of a plastic dental sealant (up to 931 micrograms; 13.3 ppb in a 70 kg adult). We found that the 2 ng/g dose of bisphenol A permanently increased the size of the preputial glands, but reduced the size of the epididymides; these organs develop from different embryonic tissues. At 20 ng/g, bisphenol A significantly decreased efficiency of sperm production (daily sperm production per g testis) by 20% relative to control males. The only significant effect of octylphenol was a reduction in daily sperm production and efficiency of sperm production at the 2 ng/g dose. A new approach to studying physiologically relevant doses of environmental endocrine disruptors is discussed, particularly with regard to the development of the reproductive organs, the brain, and behavior.

755 citations

Journal ArticleDOI
TL;DR: It is demonstrated that epithelial ER is neither necessary nor sufficient for E2-induced uterine epithelial proliferation, and similar studies in the prostate suggest that epitheric mitogenesis in both estrogen and androgen target organs are stromally mediated events.
Abstract: Estradiol-17beta (E2) acts through the estrogen receptor (ER) to regulate uterine growth and functional differentiation. To determine whether E2 elicits epithelial mitogenesis through epithelial ER versus indirectly via ER-positive stromal cells, uteri from adult ER-deficient ER knockout (ko) mice and neonatal ER-positive wild-type (wt) BALB/c mice were used to produce the following tissue recombinants containing ER in epithelium (E) and/or stroma (S), or lacking ER altogether: wt-S + wt-E, wt-S + ko-E, ko-S + ko-E, and ko-S + wt-E. Tissue recombinants were grown for 4 weeks as subrenal capsule grafts in intact female nude mice, then the hosts were treated with either E2 or oil a week after ovariectomy. Epithelial labeling index and ER expression were determined by [3H]thymidine autoradiography and immunohistochemistry, respectively. In tissue recombinants containing wt-S (wt-S + wt-E, wt-S + ko-E), E2 induced a similar large increase in epithelial labeling index compared with oil-treated controls in both types of tissue recombinants despite the absence of epithelial ER in wt-S + ko-E tissue recombinants. This proliferative effect was blocked by an ER antagonist, indicating it was mediated through ER. In contrast, in tissue recombinants prepared with ko-S (ko-S + ko-E and ko-S + wt-E), epithelial labeling index was low and not stimulated by E2 despite epithelial ER expression in ko-S + wt-E grafts. In conclusion, these data demonstrate that epithelial ER is neither necessary nor sufficient for E2-induced uterine epithelial proliferation. Instead, E2 induction of epithelial proliferation appears to be a paracrine event mediated by ER-positive stroma. These data in the uterus and similar studies in the prostate suggest that epithelial mitogenesis in both estrogen and androgen target organs are stromally mediated events.

527 citations

Journal ArticleDOI
TL;DR: It is clear that estrogen plays a more important role in adipose tissue than originally realized and that it is a major regulator of adipose tissues in both sexes during development and adulthood.
Abstract: Estrogen has historically been viewed as a major regulator of adipose tissue in adult females, but recent work has indicated that estrogen's role in adipose biology may be broader than initially ap...

379 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The development of brown adipose tissue with its characteristic protein, uncoupling protein-1 (UCP1), was probably determinative for the evolutionary success of mammals, as its thermogenesis enhances neonatal survival and allows for active life even in cold surroundings.
Abstract: Cannon, Barbara, and Jan Nedergaard. Brown Adipose Tissue: Function and Physiological Significance. Physiol Rev 84: 277–359, 2004; 10.1152/physrev.00015.2003.—The function of brown adipose tissue i...

5,470 citations

Journal ArticleDOI
TL;DR: It is concluded that clone 29 cDNA encodes a novel rat ER, which is suggested be named rat ERbeta to distinguish it from the previously cloned ER (ERalpha) from rat uterus.
Abstract: We have cloned a novel member of the nuclear receptor superfamily. The cDNA of clone 29 was isolated from a rat prostate cDNA library and it encodes a protein of 485 amino acid residues with a calculated molecular weight of 54.2 kDa. Clone 29 protein is unique in that it is highly homologous to the rat estrogen receptor (ER) protein, particularly in the DNA-binding domain (95%) and in the C-terminal ligand-binding domain (55%). Expression of clone 29 in rat tissues was investigated by in situ hybridization and prominent expression was found in prostate and ovary. In the prostate clone 29 is expressed in the epithelial cells of the secretory alveoli, whereas in the ovary the granuloma cells in primary, secondary, and mature follicles showed expression of clone 29. Saturation ligand-binding analysis of in vitro synthesized clone 29 protein revealed a single binding component for 17beta-estradiol (E2) with high affinity (Kd= 0.6 nM). In ligand-competition experiments the binding affinity decreased in the order E2 > diethylstilbestrol > estriol > estrone > 5alpha-androstane-3beta,17beta-diol >> testosterone = progesterone = corticosterone = 5alpha-androstane-3alpha,17beta-diol. In cotransfection experiments of Chinese hamster ovary cells with a clone 29 expression vector and an estrogen-regulated reporter gene, maximal stimulation (about 3-fold) of reporter gene activity was found during incubation with 10 nM of E2. Neither progesterone, testosterone, dexamethasone, thyroid hormone, all-trans-retinoic acid, nor 5alpha-androstane-3alpha,I7beta-diol could stimulate reporter gene activity, whereas estrone and 5alpha-androstane-3beta,17beta-diol did. We conclude that clone 29 cDNA encodes a novel rat ER, which we suggest be named rat ERbeta to distinguish it from the previously cloned ER (ERalpha) from rat uterus.

4,782 citations

Journal ArticleDOI
TL;DR: The evidence that endocrine disruptors have effects on male and female reproduction, breast development and cancer, prostate cancer, neuroendocrinology, thyroid, metabolism and obesity, and cardiovascular endocrinology is presented.
Abstract: Thereisgrowinginterestinthepossiblehealththreatposedbyendocrine-disruptingchemicals (EDCs), which are substances in our environment, food, and consumer products that interfere with hormone biosynthesis, metabolism, or action resulting in a deviation from normal homeostatic control or reproduction. In this first Scientific Statement of The Endocrine Society, we present the evidence that endocrine disruptors have effects on male and female reproduction, breast development and cancer, prostate cancer, neuroendocrinology, thyroid, metabolism and obesity, and cardiovascular endocrinology. Results from animal models, human clinical observations, and epidemiological studies converge to implicate EDCs as a significant concern to public health. The mechanisms of EDCs involve divergent pathways including (but not limited to) estrogenic, antiandrogenic, thyroid, peroxisome proliferator-activated receptor , retinoid, and actions through other nuclear receptors; steroidogenic enzymes; neurotransmitter receptors and systems; and many other pathways that are highly conserved in wildlife and humans, and which can be modeled in laboratory in vitro and in vivo models. Furthermore, EDCs represent a broad class of molecules such as organochlorinated pesticides and industrial chemicals, plastics and plasticizers, fuels, and many other chemicals that are present in the environment or are in widespread use. We make a number of recommendations to increase understanding of effects of EDCs, including enhancing increased basic and clinical research, invoking the precautionary principle, and advocating involvement of individual and scientific society stakeholders in communicating and implementing changes in public policy and awareness. (Endocrine Reviews 30: 293–342, 2009)

3,576 citations

Journal ArticleDOI
18 Nov 2004-Nature
TL;DR: It is revealed that fibroblasts have a more profound influence on the development and progression of carcinomas than was previously appreciated and this has important therapeutic implications.
Abstract: It is widely accepted that the development of carcinoma--the most common form of human cancer--is due to the accumulation of somatic mutations in epithelial cells. The behaviour of carcinomas is also influenced by the tumour microenvironment, which includes extracellular matrix, blood vasculature, inflammatory cells and fibroblasts. Recent studies reveal that fibroblasts have a more profound influence on the development and progression of carcinomas than was previously appreciated. These new findings have important therapeutic implications.

2,215 citations

Journal ArticleDOI
TL;DR: The recent successful generation of double knockout, or alpha beta ERKO mice of both sexes, suggests that this receptor is also not essential to survival and was most likely not a compensatory factor in the survival of the alpha ERKO.
Abstract: All scientific investigations begin with distinct objectives: first is the hypothesis upon which studies are undertaken to disprove, and second is the overall aim of obtaining further information, from which future and more precise hypotheses may be drawn Studies focusing on the generation and use of gene-targeted animal models also apply these goals and may be loosely categorized into sequential phases that become apparent as the use of the model progresses Initial studies of knockout models often focus on the plausibility of the model based on prior knowledge and whether the generation of an animal lacking the particular gene will prove lethal or not Upon the successful generation of a knockout, confirmatory studies are undertaken to corroborate previously established hypotheses of the function of the disrupted gene product As these studies continue, observations of unpredicted phenotypes or, more likely, the lack of a phenotype that was expected based on models put forth from past investigations are noted Often the surprising phenotype is due to the loss of a gene product that is downstream from the functions of the disrupted gene, whereas the lack of an expected phenotype may be due to compensatory roles filled by alternate mechanisms As the descriptive studies of the knockout continue, use of the model is often shifted to the role as a unique research reagent, to be used in studies that 1) were not previously possible in a wild-type model; 2) aimed at finding related proteins or pathways whose existence or functions were previously masked; or 3) the subsequent effects of the gene disruption on related physiological and biochemical systems The alpha ERKO mice continue to satisfy the confirmatory role of a knockout quite well As summarized in Table 4, the phenotypes observed in the alpha ERKO due to estrogen insensitivity have definitively illustrated several roles that were previously believed to be dependent on functional ER alpha, including 1) the proliferative and differentiative actions critical to the function of the adult female reproductive tract and mammary gland; 2) as an obligatory component in growth factor signaling in the uterus and mammary gland; 3) as the principal steroid involved in negative regulation of gonadotropin gene transcription and LH levels in the hypothalamic-pituitary axis; 4) as a positive regulator of PR expression in several tissues; 5) in the positive regulation of PRL synthesis and secretion from the pituitary; 6) as a promotional factor in oncogene-induced mammary neoplasia; and 7) as a crucial component in the differentiation and activation of several behaviors in both the female and male The list of unpredictable phenotypes in the alpha ERKO must begin with the observation that generation of an animal lacking a functional ER alpha gene was successful and produced animals of both sexes that exhibit a life span comparable to wild-type The successful generation of beta ERKO mice suggests that this receptor is also not essential to survival and was most likely not a compensatory factor in the survival of the alpha ERKO In support of this is our recent successful generation of double knockout, or alpha beta ERKO mice of both sexes The precise defects in certain components of male reproduction, including the production of abnormal sperm and the loss of intromission and ejaculatory responses that were observed in the alpha ERKO, were quite surprising In turn, certain estrogen pathways in the alpha ERKO female appear intact or unaffected, such as the ability of the uterus to successfully exhibit a progesterone-induced decidualization response, and the possible maintenance of an LH surge system in the hypothalamus [ABSTRACT TRUNCATED]

2,053 citations