scispace - formally typeset
Search or ask a question
Author

Paul Smith

Bio: Paul Smith is an academic researcher from ETH Zurich. The author has contributed to research in topics: Polarizer & Liquid crystal. The author has an hindex of 40, co-authored 119 publications receiving 6345 citations. Previous affiliations of Paul Smith include École Polytechnique Fédérale de Lausanne & European Synchrotron Radiation Facility.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a unified model of how charge carriers travel in conjugated polymer films is proposed, and it is shown that in high-molecular-weight polymers, efficient charge transport is allowed due to a network of interconnected aggregates that are characterized by short-range order.
Abstract: Conjugated polymer chains have many degrees of conformational freedom and interact weakly with each other, resulting in complex microstructures in the solid state. Understanding charge transport in such systems, which have amorphous and ordered phases exhibiting varying degrees of order, has proved difficult owing to the contribution of electronic processes at various length scales. The growing technological appeal of these semiconductors makes such fundamental knowledge extremely important for materials and process design. We propose a unified model of how charge carriers travel in conjugated polymer films. We show that in high-molecular-weight semiconducting polymers the limiting charge transport step is trapping caused by lattice disorder, and that short-range intermolecular aggregation is sufficient for efficient long-range charge transport. This generalization explains the seemingly contradicting high performance of recently reported, poorly ordered polymers and suggests molecular design strategies to further improve the performance of future generations of organic electronic materials. The recent demonstration that highly disordered polymer films can transport charges as effectively as polycrystalline semiconductors has called into question the relationship between structural order and mobility in organic materials. It is now shown that, in high-molecular-weight polymers, efficient charge transport is allowed due to a network of interconnected aggregates that are characterized by short-range order.

1,662 citations

Journal ArticleDOI
06 Feb 1998-Science
TL;DR: This work has fabricated devices that use thin, polarized photoluminescent layers that have highly anisotropic absorption or emission that can simplify device design and substantially increase device brightness, contrast, efficiency, and (in specific configurations) viewing angle.
Abstract: Liquid crystal displays, the dominant flat panel display technology, are limited in brightness and energy efficiency because of the use of absorbing polarizers and color filters. Liquid crystal-based photoluminescent display devices have been fabricated that use thin, polarized photoluminescent layers that have highly anisotropic absorption or emission. These layers both polarize light and generate bright color. This approach can simplify device design and substantially increase device brightness, contrast, efficiency, and (in specific configurations) viewing angle.

300 citations

Journal ArticleDOI
TL;DR: In this paper, Colloids of TiO2, where rutile was the only crystal modification which could be detected, with ca. 2.5 nm average particle diameter were synthesized by hydrolysis of TiCl4 in acidic solutions.
Abstract: Colloids of TiO2, where rutile was the only crystal modification which could be detected, with ca. 2.5 nm average particle diameter were synthesized by hydrolysis of TiCl4 in acidic solutions. The as-prepared particles were incorporated in polymers such as poly(vinyl alcohol) (PVAL), partially hydrolyzed poly(vinyl acetate) (PVAC88), polyvinylpyrrolidone, and poly(4-vinylpyridine). Nanocomposites transparent in the visible range were obtained. The highest TiO2 contents in such materials were achieved with PVAL and PVAC88, with TiO2 contents of ca. 35 wt.-% (i.e. 10.5 vol.-%). In particular, the nanocomposites with TiO2 contents above 24 wt.-% acted as efficient UV filters for radiation up to ca. 360 nm. At very low TiO2 contents, an absorption maximum of the embedded TiO2 particles was observed at 225 nm with an extinction coefficient of 140 000 cm−1 and a full width at half maximum of 45 nm, i.e. not only the absorption at the maximum at 225 nm but also at the flank of this band contributed significantly to the broadband UV absorption in the nanocomposites at higher TiO2 fractions. The incorporation of TiO2 enhanced the refractive index of the nanocomposites: for instance a refractive index of 1.609 was measured for a nanocomposite comprising 10.5 vol.-% TiO2 in PVAL, compared with 1.521 for the pristine polymer. TEM image of a section of a nanocomposite of poly(vinyl alcohol) and 11 wt.-% TiO2 (appearing dark).

278 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this critical review, recent progress in the area ofAIE research is summarized and typical examples of AIE systems are discussed, from which their structure-property relationships are derived.
Abstract: Luminogenic materials with aggregation-induced emission (AIE) attributes have attracted much interest since the debut of the AIE concept in 2001. In this critical review, recent progress in the area of AIE research is summarized. Typical examples of AIE systems are discussed, from which their structure–property relationships are derived. Through mechanistic decipherment of the photophysical processes, structural design strategies for generating new AIE luminogens are developed. Technological, especially optoelectronic and biological, applications of the AIE systems are exemplified to illustrate how the novel AIE effect can be utilized for high-tech innovations (183 references).

4,996 citations

Journal ArticleDOI
29 Apr 2004-Nature
TL;DR: The future holds even greater promise for this technology, with an entirely new generation of ultralow-cost, lightweight and even flexible electronic devices in the offing, which will perform functions traditionally accomplished using much more expensive components based on conventional semiconductor materials such as silicon.
Abstract: Organic electronics are beginning to make significant inroads into the commercial world, and if the field continues to progress at its current, rapid pace, electronics based on organic thin-film materials will soon become a mainstay of our technological existence. Already products based on active thin-film organic devices are in the market place, most notably the displays of several mobile electronic appliances. Yet the future holds even greater promise for this technology, with an entirely new generation of ultralow-cost, lightweight and even flexible electronic devices in the offing, which will perform functions traditionally accomplished using much more expensive components based on conventional semiconductor materials such as silicon.

4,967 citations

Journal ArticleDOI
TL;DR: The specific advantages brought up by a design based on the use of the halogen bond will be demonstrated in quite different fields spanning from material sciences to biomolecular recognition and drug design.
Abstract: The halogen bond occurs when there is evidence of a net attractive interaction between an electrophilic region associated with a halogen atom in a molecular entity and a nucleophilic region in another, or the same, molecular entity. In this fairly extensive review, after a brief history of the interaction, we will provide the reader with a snapshot of where the research on the halogen bond is now, and, perhaps, where it is going. The specific advantages brought up by a design based on the use of the halogen bond will be demonstrated in quite different fields spanning from material sciences to biomolecular recognition and drug design.

2,582 citations

Journal ArticleDOI
TL;DR: While the book is a standard fixture in most chemical and physical laboratories, including those in medical centers, it is not as frequently seen in the laboratories of physician's offices (those either in solo or group practice), and I believe that the Handbook can be useful in those laboratories.
Abstract: There is a special reason for reviewing this book at this time: it is the 50th edition of a compendium that is known and used frequently in most chemical and physical laboratories in many parts of the world. Surely, a publication that has been published for 56 years, withstanding the vagaries of science in this century, must have had something to offer. There is another reason: while the book is a standard fixture in most chemical and physical laboratories, including those in medical centers, it is not as frequently seen in the laboratories of physician's offices (those either in solo or group practice). I believe that the Handbook can be useful in those laboratories. One of the reasons, among others, is that the various basic items of information it offers may be helpful in new tests, either physical or chemical, which are continuously being published. The basic information may relate

2,493 citations

Journal ArticleDOI
TL;DR: School of Chemistry, Bio21 Institute, University of Melbourne, 30 Flemington Road, Victoria 3010, Australia; School of Materials Science and Engineering, Nanyang Technological University, Nastyang Avenue, Republic of Singapore 639798; Institute of Materials Research and Engineering (IMRE) and the Agency for Science, Technology and Research (A*STAR), 3 Research Link, Singapore 117602.
Abstract: A review was presented to demonstrate a historical description of the synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. Electroluminescence (EL) was first reported in poly(para-phenylene vinylene) (PPV) in 1990 and researchers continued to make significant efforts to develop conjugated materials as the active units in light-emitting devices (LED) to be used in display applications. Conjugated oligomers were used as luminescent materials and as models for conjugated polymers in the review. Oligomers were used to demonstrate a structure and property relationship to determine a key polymer property or to demonstrate a technique that was to be applied to polymers. The review focused on demonstrating the way polymer structures were made and the way their properties were controlled by intelligent and rational and synthetic design.

2,378 citations