scispace - formally typeset
Search or ask a question
Author

Paul Sunnucks

Other affiliations: Monash University, La Trobe University, University of Melbourne  ...read more
Bio: Paul Sunnucks is an academic researcher from Monash University, Clayton campus. The author has contributed to research in topics: Population & Biological dispersal. The author has an hindex of 54, co-authored 184 publications receiving 11617 citations. Previous affiliations of Paul Sunnucks include Monash University & La Trobe University.


Papers
More filters
Journal ArticleDOI
TL;DR: It is concluded that a proportion of the inferred change in the nonmitochondrial sequences occurred before transposition, and that Sitobion aphids (and other species exhibiting mtDNA transposition) may be important for studying the molecular evolution of mtDNA and pseudogenes.
Abstract: Polymerase chain reaction (PCR) products corresponding to 803 bp of the cytochrome oxidase subunits I and II region of mitochondrial DNA (mtDNA COI-II) were deduced to consist of multiple haplotypes in three Sitobion species. We investigated the molecular basis of these observations. PCR products were cloned, and six clones from one individual per species were sequenced. In each individual, one sequence was found commonly, but also two or three divergent sequences were seen. The divergent sequences were shown to be nonmitochondrial by sequencing from purified mtDNA and Southern blotting experiments. All seven nonmitochondrial clones sequenced to completion were unique. Nonmitochondrial sequences have a high proportion of unique sites, and very few characters are shared between nonmitochondrial clones to the exclusion of mtDNA. From these data, we infer that fragments of mtDNA have been transposed separately (probably into aphid chromosomes), at a frequency only known to be equalled in humans. The transposition phenomenon appears to occur infrequently or not at all in closely related genera and other aphids investigated. Patterns of nucleotide substitution in mtDNA inferred over a parsimony tree are very different from those in transposed sequences. Compared with mtDNA, nonmitochondrial sequences have less codon position bias, more even exchanges between A, G, C and T, and a higher proportion of nonsynonymous replacements. Although these data are consistent with the transposed sequences being under less constraint than mtDNA, changes in the nonmitochondrial sequences are not random: there remains significant position bias, and probable excesses of synonymous replacements and of conservative inferred amino acid replacements. We conclude that a proportion of the inferred change in the nonmitochondrial sequences occurred before transposition. We believe that Sitobion aphids (and other species exhibiting mtDNA transposition) may be important for studying the molecular evolution of mtDNA and pseudogenes. However, our data highlight the need to establish the true evolutionary relationships between sequences in comparative investigations.

1,076 citations

Journal ArticleDOI
Paul Sunnucks1
TL;DR: Single-locus genetic markers and those that produce gene genealogies yield information that is truly comparable among studies and answer biological questions most efficiently and also contribute to much broader investigations of evolutionary, population and conservation biology.
Abstract: Population genetics has come of age. Three important components have come together: efficient techniques to examine informative segments of DNA, statistics to analyse DNA data and the availability of easy-to-use computer packages. Single-locus genetic markers and those that produce gene genealogies yield information that is truly comparable among studies. These markers answer biological questions most efficiently and also contribute to much broader investigations of evolutionary, population and conservation biology. For these reasons, single-locus and genealogical markers should be the focus of the intensive genetic data collection that has begun owing to the power of genetics in population biology.

1,002 citations

Journal ArticleDOI
TL;DR: A classification of translocations based on specific genetic goals for both threatened species and ecological restoration is provided, separating targets based on ‘genetic rescue’ of current population fitness from those focused on maintaining adaptive potential.
Abstract: Translocations are being increasingly proposed as a way of conserving biodiversity, particularly in the management of threatened and keystone species, with the aims of maintaining biodiversity and ecosystem function under the combined pressures of habitat fragmentation and climate change. Evolutionary genetic considerations should be an important part of translocation strategies, but there is often confusion about concepts and goals. Here, we provide a classification of translocations based on specific genetic goals for both threatened species and ecological restoration, separating targets based on ‘genetic rescue’ of current population fitness from those focused on maintaining adaptive potential. We then provide a framework for assessing the genetic benefits and risks associated with translocations and provide guidelines for managers focused on conserving biodiversity and evolutionary processes. Case studies are developed to illustrate the framework.

703 citations

Journal ArticleDOI
TL;DR: SSCP (single‐stranded conformation polymorphism) offers a sensitive but inexpensive, rapid, and convenient method for determining which DNA samples in a set differ in sequence, so that only an informative subset need be sequenced.
Abstract: All genetic markers are estimators of DNA nucleotide sequence variation. Rather than obtaining DNA sequence data, it is cheaper and faster to use techniques that estimate sequence variation, although this usually results in the loss of some information. SSCP (single-stranded conformation polymorphism) offers a sensitive but inexpensive, rapid, and convenient method for determining which DNA samples in a set differ in sequence, so that only an informative subset need be sequenced. In short, most DNA sequence variation can be detected with relatively little sequencing. SSCP has been widely applied in medical diagnosis, yet few studies have been published in population genetics. The utility and convenience of SSCP is far from fully appreciated by molecular population biologists. We hope to help redress this by illustrating the application of a single simple SSCP protocol to mitochondrial genes, nuclear introns, microsatellites, and anonymous nuclear sequences, in a range of vertebrates and invertebrates.

398 citations

Journal ArticleDOI
TL;DR: The aims are to review and refine key hypotheses derived from palaeoclimatic data and the fossil record that are critical to understanding the evolution of the Australian mesic biota and examine predictions arising from these hypotheses using available molecular phylogenetic and phylogeographical data.
Abstract: Aim: The mesic biome, encompassing both rain forest and open sclerophyllous forests, is central to understanding the evolution of Australia’s terrestrial biota and has long been considered the ancestral biome of the continent. Our aims are to review and refine key hypotheses derived from palaeoclimatic data and the fossil record that are critical to understanding the evolution of the Australian mesic biota. We examine predictions arising from these hypotheses using available molecular phylogenetic and phylogeographical data. In doing so, we increase understanding of the mesic biota and highlight data deficiencies and fruitful areas for future research. Location: The mesic biome of Australia, along the eastern coast of Australia, and in the south-east and south-west, including its rain forest and sclerophyllous, often eucalypt-dominated, habitats. Methods: We derived five hypotheses based on palaeoclimatic and fossil data regarding the evolution of the Australian mesic biota, particularly as it relates to the mesic biome. We evaluated predictions formulated from these hypotheses using suitable molecular phylogenies of terrestrial plants and animals and freshwater invertebrates. Results: There was support for the ancestral position of mesic habitat in most clades, with support for rain forest habitat ancestry in some groups, while evidence of ancestry in mesic sclerophyllous habitats was also demonstrated for some plants and herpetofauna. Contraction of mesic habitats has led to extinction of numerous lineages in many clades and this is particularly evident in the rain forest component. Species richness was generally higher in sclerophyllous clades than in rain forest clades, probably due to higher rates of net speciation in the former and extinction in the latter. Although extinction has been prominent in rain forest communities, tropical rain forests appear to have experienced extensive immigration from northern neighbours. Pleistocene climatic oscillations have left genetic signatures at multiple levels of divergence and with complex geographical structuring, even in areas with low topographical relief and few obvious geographical barriers. Main conclusions: Our review confirms long-held views of the ancestral position of the Australian mesic biome but also reveals new insights into the complexity of the processes of contraction, fragmentation, extinction and invasion during the evolution of this biome.

326 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal Article
Fumio Tajima1
30 Oct 1989-Genomics
TL;DR: It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

11,521 citations

Journal Article
TL;DR: For the next few weeks the course is going to be exploring a field that’s actually older than classical population genetics, although the approach it’ll be taking to it involves the use of population genetic machinery.
Abstract: So far in this course we have dealt entirely with the evolution of characters that are controlled by simple Mendelian inheritance at a single locus. There are notes on the course website about gametic disequilibrium and how allele frequencies change at two loci simultaneously, but we didn’t discuss them. In every example we’ve considered we’ve imagined that we could understand something about evolution by examining the evolution of a single gene. That’s the domain of classical population genetics. For the next few weeks we’re going to be exploring a field that’s actually older than classical population genetics, although the approach we’ll be taking to it involves the use of population genetic machinery. If you know a little about the history of evolutionary biology, you may know that after the rediscovery of Mendel’s work in 1900 there was a heated debate between the “biometricians” (e.g., Galton and Pearson) and the “Mendelians” (e.g., de Vries, Correns, Bateson, and Morgan). Biometricians asserted that the really important variation in evolution didn’t follow Mendelian rules. Height, weight, skin color, and similar traits seemed to

9,847 citations

Journal ArticleDOI
TL;DR: This study derives likelihood ratios for paternity inference with codominant markers taking account of typing error, and defines a statistic Δ for resolving paternity, and demonstrates the method is robust to their presence under commonly encountered conditions.
Abstract: Paternity inference using highly polymorphic codominant markers is becoming common in the study of natural populations. However, multiple males are often found to be genetically compatible with each offspring tested, even when the probability of excluding an unrelated male is high. While various methods exist for evaluating the likelihood of paternity of each nonexcluded male, interpreting these likelihoods has hitherto been difficult, and no method takes account of the incomplete sampling and error-prone genetic data typical of large-scale studies of natural systems. We derive likelihood ratios for paternity inference with codominant markers taking account of typing error, and define a statistic delta for resolving paternity. Using allele frequencies from the study population in question, a simulation program generates criteria for delta that permit assignment of paternity to the most likely male with a known level of statistical confidence. The simulation takes account of the number of candidate males, the proportion of males that are sampled and gaps and errors in genetic data. We explore the potentially confounding effect of relatives and show that the method is robust to their presence under commonly encountered conditions. The method is demonstrated using genetic data from the intensively studied red deer (Cervus elaphus) population on the island of Rum, Scotland. The Windows-based computer program, CERVUS, described in this study is available from the authors. CERVUS can be used to calculate allele frequencies, run simulations and perform parentage analysis using data from all types of codominant markers.

4,076 citations

Journal ArticleDOI
TL;DR: The genetic effects of pleistocene ice ages are approached by deduction from paleoenvironmental information, by induction from the genetic structure of populations and species, and by their combination to infer likely consequences.
Abstract: The genetic effects of pleistocene ice ages are approached by deduction from paleoenvironmental information, by induction from the genetic structure of populations and species, and by their combination to infer likely consequences. (1) Recent palaeoclimatic information indicate rapid global reversals and changes in ranges of species which would involve elimination with spreading from the edge. Leading edge colonization during a rapid expansion would be leptokurtic and lead to homozygosity and spatial assortment of genomes. In Europe and North America, ice age contractions were into southern refugia, which would promote genome reorganization. (2) The present day genetic structure of species shows frequent geographic subdivision, with parapatric genomes, hybrid zones and suture zones. A survey of recent DNA phylogeographic information supports and extends earlier work. (3) The grasshopperChorthippus parallelusis used to illustrate such data and processes. Its range in Europe is divided on DNA sequences into five parapatric races, with southern genomes showing greater haplotype diversity — probably due to southern mountain blocks acting as refugia and northern expansion reducing diversity. (4) Comparison with other recent studies shows a concordance of such phylogeographic data over pleistocene time scales. (5) The role that ice age range changes may have played in changing adaptations is explored, including the limits of range, rapid change in new invasions and refugial differentiation in a variety of organisms. (6) The effects of these events in causing divergence and speciation are explored usingChorthippusas a paradigm. Repeated contraction and expansion would accumulate genome differences and adaptations, protected from mixing by hybrid zones, and such a composite mode of speciation could apply to many organisms.

3,850 citations