scispace - formally typeset
Search or ask a question
Author

Paul Syverson

Bio: Paul Syverson is an academic researcher from United States Naval Research Laboratory. The author has contributed to research in topics: Onion routing & Anonymity. The author has an hindex of 50, co-authored 144 publications receiving 15073 citations. Previous affiliations of Paul Syverson include EMC Corporation & United States Department of the Navy.


Papers
More filters
ReportDOI
13 Aug 2004
TL;DR: This second-generation Onion Routing system addresses limitations in the original design by adding perfect forward secrecy, congestion control, directory servers, integrity checking, configurable exit policies, and a practical design for location-hidden services via rendezvous points.
Abstract: We present Tor, a circuit-based low-latency anonymous communication service. This second-generation Onion Routing system addresses limitations in the original design by adding perfect forward secrecy, congestion control, directory servers, integrity checking, configurable exit policies, and a practical design for location-hidden services via rendezvous points. Tor works on the real-world Internet, requires no special privileges or kernel modifications, requires little synchronization or coordination between nodes, and provides a reasonable tradeoff between anonymity, usability, and efficiency. We briefly describe our experiences with an international network of more than 30 nodes. We close with a list of open problems in anonymous communication.

3,960 citations

Journal ArticleDOI
TL;DR: Anonymous connections and their implementation using onion routing are described and several application proxies for onion routing, as well as configurations of onion routing networks are described.
Abstract: Onion routing is an infrastructure for private communication over a public network. It provides anonymous connections that are strongly resistant to both eavesdropping and traffic analysis. Onion routing's anonymous connections are bidirectional, near real-time, and can be used anywhere a socket connection can be used. Any identifying information must be in the data stream carried over an anonymous connection. An onion is a data structure that is treated as the destination address by onion routers; thus, it is used to establish an anonymous connection. Onions themselves appear different to each onion router as well as to network observers. The same goes for data carried over the connections they establish. Proxy-aware applications, such as Web browsers and e-mail clients, require no modification to use onion routing, and do so through a series of proxies. A prototype onion routing network is running between our lab and other sites. This paper describes anonymous connections and their implementation using onion routing. This paper also describes several application proxies for onion routing, as well as configurations of onion routing networks.

1,307 citations

Proceedings ArticleDOI
04 May 1997
TL;DR: A detailed specification of the implemented onion routing system, a vulnerability analysis based on this specification, and performance results are provided.
Abstract: Onion routing provides anonymous connections that are strongly resistant to both eavesdropping and traffic analysis. Unmodified Internet applications can use these anonymous connections by means of proxies. The proxies may also make communication anonymous by removing identifying information from the data stream. Onion routing has been implemented on Sun Solaris 2.X with proxies for Web browsing, remote logins and e-mail. This paper's contribution is a detailed specification of the implemented onion routing system, a vulnerability analysis based on this specification, and performance results.

931 citations

Journal ArticleDOI
TL;DR: Onion Routing operates by dynamically building anonymous connections within a network of real-time Chaum Onion Routing, which provides anonymous connections that are strongly resistant to both eavesdropping and traffic analysis.
Abstract: reserving privacy means not only hiding the content of messages, but also hiding who is talking to whom (traffic analysis). Much like a physical envelope, the simple application of cryptography within a packet-switched network hides the contents of messages being sent, but can reveal who is talking to whom, and how often. Onion Routing is a general-purpose infrastructure for private communication over a public network [3, 4, 6]. It provides anonymous connections that are strongly resistant to both eavesdropping and traffic analysis. The connections are bidirectional, near real-time, and can be used for both connection-based and connectionless traffic. Onion Routing interfaces with off-theshelf application software and systems through specialized proxies, making it easy to integrate into existing systems. Prototypes have been running since July 1997. At press time, the prototype network is processing more than one million Web connections per month from more than six thousand IP addresses in twenty countries and in all six main top level domains. Onion Routing operates by dynamically building anonymous connections within a network of real-time Chaum Onion Routing

681 citations

Book ChapterDOI
30 May 1996
TL;DR: This paper describes an architecture, Onion Routing, that limits a network's vulnerability to traffic analysis and provides real-time, bi-directional, anonymous communication for any protocol that can be adapted to use a proxy service.
Abstract: This paper describes an architecture, Onion Routing, that limits a network's vulnerability to traffic analysis. The architecture provides anonymous socket connections by means of proxy servers. It provides real-time, bi-directional, anonymous communication for any protocol that can be adapted to use a proxy service. Specifically, the architecture provides for bi-directional communication even though no-one but the initiator's proxy server knows anything but previous and next hops in the communication chain. This implies that neither the respondent nor his proxy server nor any external observer need know the identity of the initiator or his proxy server. A prototype of Onion Routing has been implemented. This prototype works with HTTP (World Wide Web) proxies. In addition, an analogous proxy for TELNET has been implemented. roxies for FTP and SMTP are under development.

564 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Book
01 Jan 1996
TL;DR: A valuable reference for the novice as well as for the expert who needs a wider scope of coverage within the area of cryptography, this book provides easy and rapid access of information and includes more than 200 algorithms and protocols.
Abstract: From the Publisher: A valuable reference for the novice as well as for the expert who needs a wider scope of coverage within the area of cryptography, this book provides easy and rapid access of information and includes more than 200 algorithms and protocols; more than 200 tables and figures; more than 1,000 numbered definitions, facts, examples, notes, and remarks; and over 1,250 significant references, including brief comments on each paper.

13,597 citations

ReportDOI
13 Aug 2004
TL;DR: This second-generation Onion Routing system addresses limitations in the original design by adding perfect forward secrecy, congestion control, directory servers, integrity checking, configurable exit policies, and a practical design for location-hidden services via rendezvous points.
Abstract: We present Tor, a circuit-based low-latency anonymous communication service. This second-generation Onion Routing system addresses limitations in the original design by adding perfect forward secrecy, congestion control, directory servers, integrity checking, configurable exit policies, and a practical design for location-hidden services via rendezvous points. Tor works on the real-world Internet, requires no special privileges or kernel modifications, requires little synchronization or coordination between nodes, and provides a reasonable tradeoff between anonymity, usability, and efficiency. We briefly describe our experiences with an international network of more than 30 nodes. We close with a list of open problems in anonymous communication.

3,960 citations

Proceedings ArticleDOI
05 May 2003
TL;DR: A middleware architecture and algorithms that can be used by a centralized location broker service that adjusts the resolution of location information along spatial or temporal dimensions to meet specified anonymity constraints based on the entities who may be using location services within a given area.
Abstract: Advances in sensing and tracking technology enable location-based applications but they also create significant privacy risks. Anonymity can provide a high degree of privacy, save service users from dealing with service providers’ privacy policies, and reduce the service providers’ requirements for safeguarding private information. However, guaranteeing anonymous usage of location-based services requires that the precise location information transmitted by a user cannot be easily used to re-identify the subject. This paper presents a middleware architecture and algorithms that can be used by a centralized location broker service. The adaptive algorithms adjust the resolution of location information along spatial or temporal dimensions to meet specified anonymity constraints based on the entities who may be using location services within a given area. Using a model based on automotive traffic counts and cartographic material, we estimate the realistically expected spatial resolution for different anonymity constraints. The median resolution generated by our algorithms is 125 meters. Thus, anonymous location-based requests for urban areas would have the same accuracy currently needed for E-911 services; this would provide sufficient resolution for wayfinding, automated bus routing services and similar location-dependent services.

2,430 citations

Book ChapterDOI
01 Jan 1977
TL;DR: In the Hamadryas baboon, males are substantially larger than females, and a troop of baboons is subdivided into a number of ‘one-male groups’, consisting of one adult male and one or more females with their young.
Abstract: In the Hamadryas baboon, males are substantially larger than females. A troop of baboons is subdivided into a number of ‘one-male groups’, consisting of one adult male and one or more females with their young. The male prevents any of ‘his’ females from moving too far from him. Kummer (1971) performed the following experiment. Two males, A and B, previously unknown to each other, were placed in a large enclosure. Male A was free to move about the enclosure, but male B was shut in a small cage, from which he could observe A but not interfere. A female, unknown to both males, was then placed in the enclosure. Within 20 minutes male A had persuaded the female to accept his ownership. Male B was then released into the open enclosure. Instead of challenging male A , B avoided any contact, accepting A’s ownership.

2,364 citations