scispace - formally typeset
Search or ask a question
Author

Paul V. Ferkul

Bio: Paul V. Ferkul is an academic researcher from Case Western Reserve University. The author has contributed to research in topics: Diffusion flame & Flame spread. The author has an hindex of 3, co-authored 3 publications receiving 145 citations.

Papers
More filters
Journal ArticleDOI
01 Jan 1989
TL;DR: In this article, the flame behavior is observed to depend strongly on the magnitude of the relative velocity between the flame and the atmosphere, and a low velocity quenching limit is found in low oxgen environments.
Abstract: Diffusion flame spread over a thin solid fuel in quiescent and slowly moving atmospheres is studied in microgravity. The flame behavior is observed to depend strongly on the magnitude of the relative velocity between the flame and the atmosphere. In particular, a low velocity quenching limit is found to exist in low oxgen environments. Using both the microgravity results and previously published data at high opposed-flow velocities, the flame spread behavior is examined over a wide velocity range. A flammability map using molar oxygen percentages and characteristic relative velocities as coordinates is constructed. Trends of flame spread rate are determined and mechanisms for flame extinction are discussed.

122 citations

01 Apr 1993
TL;DR: In this paper, a numerical model was developed to examine laminar flame spread and extinction over a thin solid fuel in lowspeed concurrent flows, where parabolic and elliptic regions were coupled smoothly by an appropriate matching of boundary conditions.
Abstract: A numerical model is developed to examine laminar flame spread and extinction over a thin solid fuel in lowspeed concurrent flows. The model provides a more precise fluid-mechanical description of the flame by incorporating an elliptic treatment of the upstream flame stabilization zone near the fuel burnout point. Parabolic equations are used to treat the downstream flame, which has a higher flow Reynolds number. The parabolic and elliptic regions are coupled smoothly by an appropriate matching of boundary conditions. The solid phase consists of an energy equation with surface radiative loss and a surface pyrolysis relation. Steady spread with constant flame and pyrolysis lengths is found possible for thin fuels and this facilitates the adoption of a moving coordinate system attached to the flame with the flame spread rate being an eigen value. Calculations are performed in purely forced flow in a range of velocities which are lower than those induced in a normal gravity buoyant environment. Both quenching and blowoff extinction are observed. The results show that as flow velocity or oxygen percentage is reduced, the flame spread rate, the pyrolysis length, and the flame length all decrease, as expected. The flame standoff distance from the solid and the reaction zone thickness, however, first increase with decreasing flow velocity, but eventually decrease very near the quenching extinction limit. The short, diffuse flames observed at low flow velocities and oxygen levels are consistent with available experimental data. The maximum flame temperature decreases slowly at first as flow velocity is reduced, then falls more steeply close to the quenching extinction limit. Low velocity quenching occurs as a result of heat loss. At low velocities, surface radiative loss becomes a significant fraction of the total combustion heat release. In addition, the shorter flame length causes an increase in the fraction of conduction downstream compared to conduction to the fuel. These heat losses lead to lower flame temperatures, and ultimately, extinction. This extinction mechanism differs from that of blowoff, where the flame is unable to be stabilized due to the high flow velocity.

23 citations

01 Feb 1989
TL;DR: In this paper, the authors examined the flame spread and flame extinction characteristics of a thin fuel burning in a low-speed forced convective environment in microgravity and found that flame spread rate was observed to decrease both with decreasing ambient oxygen concentration as well as decreasing free stream velocity.
Abstract: The flame spread and flame extinction characteristics of a thin fuel burning in a low-speed forced convective environment in microgravity were examined. The flame spread rate was observed to decrease both with decreasing ambient oxygen concentration as well as decreasing free stream velocity. A new mode of flame extinction was observed, caused by either of two means: keeping the free stream velocity constant and decreasing the oxygen concentration, or keeping the oxygen concentration constant and decreasing the free stream velocity. This extinction is called quenching extinction. By combining this data together with a previous microgravity quiescent flame study and normal-gravity blowoff extinction data, a flammability map was constructed with molar percentage oxygen and characteristic relative velocity as coordinates. The Damkohler number is not sufficient to predict flame spread and extinction in the near quench limit region.

8 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a flame spread map is presented which indicates three distinct regions where different mechanisms control the flame spread process: near-quenching region, very low characteristic relative velocities, a new controlling mechanism for flame spread - oxidizer transport-limited chemical reaction - is proposed.
Abstract: Microgravity tests varying oxygen concentration and forced flow velocity have examined the importance of transport processes on flame spread over very thin solid fuels. Flame spread rates, solid phase temperature profiles and flame appearance for these tests are measured. A flame spread map is presented which indicates three distinct regions where different mechanisms control the flame spread process. In the near-quenching region (very low characteristic relative velocities) a new controlling mechanism for flame spread - oxidizer transport-limited chemical reaction - is proposed. In the near-limit, blowoff region, high opposed flow velocities impose residence time limitations on the flame spread process. A critical characteristic relative velocity line between the two near-limit regions defines conditions which result in maximum flammability both in terms of a peak flame spread rate and minimum oxygen concentration for steady burning. In the third region, away from both near-limit regions, the flame spread behavior, which can accurately be described by a thermal theory, is controlled by gas-phase conduction.

142 citations

Journal ArticleDOI
TL;DR: A review of modeling and experiments of the ignition and flame spread over liquid fuel pools for separate regimes defined by the initial pool temperature relative to the fuel flash point is given in this paper.
Abstract: This article is a review of modeling and experiments of the ignition and flame spread over liquid fuel pools for separate regimes defined by the initial pool temperature relative to the fuel flash point. The purpose of this review is twofold. First it will emphasise newer or lesser known studies, both experimental and numerical, because these may question or alter some of the conclusions from the last review of the field by Glassman and Dryer, published in 1981. Second, it will cover the additional subjects of ignition susceptibility, analytic and numerical modeling, non-air atmospheres and forced flow, beds of fuel-soaked sand or glass beads and buoyancy-related processes applicable to microgravity combustion science and spacecraft fire safety. The review concludes with recommendations for further numerical and experimental research.

130 citations

Journal ArticleDOI
01 Jan 1989
TL;DR: In this article, the flame behavior is observed to depend strongly on the magnitude of the relative velocity between the flame and the atmosphere, and a low velocity quenching limit is found in low oxgen environments.
Abstract: Diffusion flame spread over a thin solid fuel in quiescent and slowly moving atmospheres is studied in microgravity. The flame behavior is observed to depend strongly on the magnitude of the relative velocity between the flame and the atmosphere. In particular, a low velocity quenching limit is found to exist in low oxgen environments. Using both the microgravity results and previously published data at high opposed-flow velocities, the flame spread behavior is examined over a wide velocity range. A flammability map using molar oxygen percentages and characteristic relative velocities as coordinates is constructed. Trends of flame spread rate are determined and mechanisms for flame extinction are discussed.

122 citations

Journal ArticleDOI
Osamu Fujita1
01 Jan 2015
TL;DR: In this paper, the authors introduce fire safety standards for flammability evaluation of solid material intended for use in a spacecraft habitat, and the difference between the limiting value in microgravity and the indices given by the standard test methods on the ground is discussed.
Abstract: This paper introduces fire safety standards for flammability evaluation of solid material intended for use in a spacecraft habitat. Two types of existing standards include material evaluation by pass/fail criteria corresponding to Test 1 of NASA STD 6001B and evaluation by a flammability index such as maximum oxygen concentration (MOC) corresponding to the improved Test 1. The advantage of the latter is the wide applicability of the MOC index to different atmospheres in spacecraft. Additionally, the limiting oxygen index (LOI) method is introduced as a potential alternative index for the evaluation using the improved Test 1 method. When criteria based on an index such as MOC or LOI are applied for material screening, the discrepancy of the index to the actual flammability limit in microgravity such as minimum limiting oxygen concentration (MLOC) is essential information for guaranteeing fire safety in space because material flammability can be higher in microgravity. In this paper, the existing research on the effects of significant parameters on material flammability in microgravity are introduced, and the difference between the limiting value in microgravity and the indices given by the standard test methods on the ground is discussed. Finally, on-going efforts to develop estimation methods of material flammability in microgravity according to normal gravity tests are summarized.

74 citations

Journal ArticleDOI
TL;DR: In this article, a numerical model was developed to examine steady, laminar flame spread and extinction over a thin solid fuel in low-speed concurrent flow, incorporating an elliptic treatment of the upstream flame stabilization zone near the fuel burnout point, and a parabolic treatment of downstream flame, which has a higher flow Reynolds number.
Abstract: A numerical model is developed to examine steady, laminar flame spread and extinction over a thin solid fuel in low-speed concurrent flow. The model incorporates an elliptic treatment of the upstream flame stabilization zone near the fuel burnout point, and a parabolic treatment of the downstream flame, which has a higher flow Reynolds number. This provides a more precise fluid-mechanical description of the flame than using parabolic equations throughout, and is the first time such an approach has been used in concurrent flame spread modeling. The parabolic and elliptic regions are coupled smoothly by matching boundary conditions. The solid phase consists of an energy equation with surface radiative loss and a surface pyrolysis relation. Calculations (with the flame spread rate being an eigenvalue) are performed for forced flow without gravitational influences in a range of velocities which are lower than those induced in a normal gravity buoyant environment. Steady spread with constant flame and...

67 citations