scispace - formally typeset
Search or ask a question
Author

Paul van Dijk

Bio: Paul van Dijk is an academic researcher from ASML Holding. The author has contributed to research in topics: Beamforming & Photonics. The author has an hindex of 8, co-authored 24 publications receiving 176 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The use of analog radio-over-fiber (ARoF) is proposed and demonstrated as a viable alternative which, combined with space division multiplexing in the optical distribution network as well as photonic integration of the required transceivers, shows a path to a scaleable fronthaul solution for 5G.
Abstract: The introduction of millimeter wave (mm-wave) frequency bands for cellular communications with significantly larger bandwidths compared to their sub-6 GHz counterparts, the resulting densification of network deployments and the introduction of antenna arrays with beamforming result in major increases in fronthaul capacity required for 5G networks As a result, a radical re-design of the radio access network is required since traditional fronthaul technologies are not scaleable In this article the use of analog radio-over-fiber (ARoF) is proposed and demonstrated as a viable alternative which, combined with space division multiplexing in the optical distribution network as well as photonic integration of the required transceivers, shows a path to a scaleable fronthaul solution for 5G The trade-off between digitized and analog fronthaul is discussed and the ARoF architecture proposed by blueSPACE is introduced Two options for the generation of ARoF two-tone signals for mm-wave generation via optical heterodyning are discussed in detail, including designs for the implementation in photonic integrated circuits as well as measurements of their phase noise performance The proposed photonic integrated circuit designs include the use of both InP and SiN platforms for ARoF signal generation and optical beamforming respectively, proposing a joint design that allows for true multi-beam transmission from a single antenna array Phase noise measurements based on laboratory implementations of ARoF generation based on a Mach–Zehnder modulator with suppressed carrier and with an optical phase-locked loop are presented and the suitability of these transmitters is evaluated though phase noise simulations Finally, the viability of the proposed ARoF fronthaul architecture for the transport of high-bandwidth mm-wave 5G signals is proven with the successful implementation of a real-time transmission link based on an ARoF baseband unit with full real-time processing of extended 5G new radio signals with 800 MHz bandwidth, achieving transmission over 10 km of 7-core single-mode multi-core fiber and 9 m mm-wave wireless at 255 GHz with bit error rates below the limit for a 7% overhead hard decision forward error correction

48 citations

Journal ArticleDOI
TL;DR: Two reconfigurable optical add-drop multiplexers, operating in the second or third telecom window, as well as a 1x4x4 reconfigable lambda-router operating in a second telecom window are demonstrated.
Abstract: Two reconfigurable optical add-drop multiplexers, operating in the second or third telecom window, as well as a 1×4×4 reconfigurable λ-router operating in the second telecom window, are demonstrated. The devices have a footprint less than 2 mm2 and are based on thermally tunable vertically coupled microring resonators fabricated in Si3N4/SiO2.

42 citations

Journal ArticleDOI
TL;DR: A novel free space optical interconnect solution for intra-data center networks that utilizes 2D optical beam steering for the transmitter, and high bandwidth wide-area photodiode arrays for the receiver is introduced.
Abstract: Data centers are continuously growing in scale and can contain more than one million servers spreading across thousands of racks; requiring a large-scale switching network to provide broadband and reconfigurable interconnections of low latency. Traditional data center network architectures, through the use of electrical packet switches in a multi-tier topology, has fundamental weaknesses such as oversubscription and cabling complexity. Wireless intra-data center interconnection solutions have been proposed to deal with the cabling problem and can simultaneously address the over-provisioning problem by offering efficient topology re-configurability. In this work we introduce a novel free space optical interconnect solution for intra-data center networks that utilizes 2D optical beam steering for the transmitter, and high bandwidth wide-area photodiode arrays for the receiver. This new breed of free space optical interconnects can be developed on a photonic integrated circuit; offering ns switching at sub-μW consumption. The proposed interconnects together with a networking architecture that is suitable for utilizing those devices could support next generation intra-data center networks, fulfilling the requirements of seamless operation, high connectivity, and agility in terms of the reconfiguration time.

31 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed an analog optical fronthaul 5G architecture, which exploits the wavelength division multiplexing (WDM) technique and multicarrier intermediate-frequency-over-fiber (IFoF) signal generation per wavelength in order to satisfy the demanding needs of hotspot areas.
Abstract: Analog fronthauling is currently promoted as a bandwidth and energy-efficient solution that can meet the requirements of the Fifth Generation (5G) vision for low latency, high data rates and energy efficiency. In this paper, we propose an analog optical fronthaul 5G architecture, fully aligned with the emerging Centralized-Radio Access Network (C-RAN) concept. The proposed architecture exploits the wavelength division multiplexing (WDM) technique and multicarrier intermediate-frequency-over-fiber (IFoF) signal generation per wavelength in order to satisfy the demanding needs of hotspot areas. Particularly, the fronthaul link employs photonic integrated circuit (PIC)-based WDM optical transmitters (Txs) at the baseband unit (BBU), while novel reconfigurable optical add-drop multiplexers (ROADMs) cascaded in an optical bus are used at the remote radio head (RRH) site, to facilitate reconfigurable wavelength switching functionalities up to 4 wavelengths. An aggregate capacity of 96 Gb/s has been reported by exploiting two WDM links carrying multi-IF band orthogonal frequency division multiplexing (OFDM) signals at a baud rate of 0.5 Gbd with sub-carrier (SC) modulation of 64-QAM. All signals exhibited error vector magnitude (EVM) values within the acceptable 3rd Generation Partnership Project (3GPP) limits of 8%. The longest reach to place the BBU away from the hotspot was also investigated, revealing acceptable EVM performance for fiber lengths up to 4.8 km.

23 citations

Journal ArticleDOI
TL;DR: The two-stage FiWi IFoF/mmWave fronthaul bus topology, based on a miniaturized, integrated, low loss Si3N4 ROADM and supporting high-capacity wireless beamsteering capability can form a promising roadmap towards flexible and reconfigurable 5G C-RAN architectures.
Abstract: We demonstrate experimentally a bandwidth-reconfigurable mmWave Fiber Wireless (FiWi) fronthaul bus topology for spectrally efficient and flexibly reconfigurable 5G Centralized-Radio Access Networks (C-RAN). The proposed fronthaul architecture includes four 1 Gb/s Intermediate Frequency over Fiber (IFoF) channels that can be flexibly allocated among two in-series Reconfigurable Optical Add/Drop Multiplexer (ROADM) integrated nodes, supporting in total 8 V-band 32-element Phased Array Antenna (PAA) terminals. The ROADM was fabricated as an integrated photonic device exploiting the ultra-low loss Si3N4 TriPleX waveguide integration platform and an architectural layout based on cascaded MZI interleavers. The device has flat top response of 32.5 GHz with a Free Spectral Range (FSR) of 100 GHz and fiber-to-fiber losses of 5 dB, while the V-band PAA supports analog RF beamsteering capabilities within a 90°-sector and 1m wireless distance. Each of the FiWi links carries a 250 MBd QAM16 waveform enabling a total of 1 Gb/s rate per end user beam, complying with the 5G Key Performance Indicator (KPI) user-rate requirement. Bandwidth-reconfigurability is experimentally demonstrated by selectively dropping channels either at the first or at the second ROADM node, allowing in this way the bandwidth allocation to be flexibly defined between two different network segments. Both uplink and downlink performance are experimentally validated for different ratios of bandwidth allocation among the two nodes, revealing Error Vector Magnitude (EVM) values that meet the respective 3GPP signal quality specifications. The two-stage FiWi IFoF/mmWave fronthaul bus topology, based on a miniaturized, integrated, low loss Si3N4 ROADM and supporting high-capacity wireless beamsteering capability can form a promising roadmap towards flexible and reconfigurable 5G C-RAN architectures.

19 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, Abraham and Casperson used the BR = y + p P (3a j ) to express the BR in terms of BR + p p + 3a j.
Abstract: Manuscript received April 14, 1983; revised June 24, 1983. N. B. Abraham is with the Department of Physics, BrynMawr College, Bryn Mawr, PA 19010. P. Mandel is with the Service de Chimie Physique 11, Universite Libre de Bruselles, Brussels, Belgium. L. W. Casperson is with the Department of Electrical Engineering and Applied Science: University of California, Los Angeles, CA 90024. Editor’s Note: A similar correction by Dr. F. Holigner and Prof. Dr. H. Weber of the Universitat Kaiserslautern was received on May 4, 1983. tions can be expressed as BR = y + p P (3a j

371 citations

Journal ArticleDOI
26 Sep 2018
TL;DR: This review paper covers the history of low-loss Si3N4 waveguide technology and a survey of worldwide research in a variety of device and applications as well as the status of Si3n4 foundries.
Abstract: The silicon nitride (Si3N4) planar waveguide platform has enabled a broad class of low-loss planar-integrated devices and chip-scale solutions that benefit from transparency over a wide wavelength range (400–2350 nm) and fabrication using wafer-scale processes. As a complimentary platform to silicon-on-insulator (SOI) and III–V photonics, Si3N4 waveguide technology opens up a new generation of system-on-chip applications not achievable with the other platforms alone. The availability of low-loss waveguides (<1 dB/m) that can handle high optical power can be engineered for linear and nonlinear optical functions, and that support a variety of passive and active building blocks opens new avenues for system-on-chip implementations. As signal bandwidth and data rates continue to increase, the optical circuit functions and complexity made possible with Si3N4 has expanded the practical application of optical signal processing functions that can reduce energy consumption, size and cost over today’s digital electronic solutions. Researchers have been able to push the performance photonic-integrated components beyond other integrated platforms, including ultrahigh Q resonators, optical filters, highly coherent lasers, optical signal processing circuits, nonlinear optical devices, frequency comb generators, and biophotonic system-on-chip. This review paper covers the history of low-loss Si3N4 waveguide technology and a survey of worldwide research in a variety of device and applications as well as the status of Si3N4 foundries.

301 citations

Journal ArticleDOI
TL;DR: This tutorial overviews the distinct features of microwave photonics and some key microwave photonic technologies that are currently known to be attractive for radars and their performance that may interest the radar society.
Abstract: As the only method for all-weather, all-time and long-distance target detection and recognition, radar has been intensively studied since it was invented, and is considered as an essential sensor for future intelligent society. In the past few decades, great efforts were devoted to improving radar's functionality, precision, and response time, of which the key is to generate, control and process a wideband signal with high speed. Thanks to the broad bandwidth, flat response, low loss transmission, multidimensional multiplexing, ultrafast analog signal processing and electromagnetic interference immunity provided by modern photonics, implementation of the radar in the optical domain can achieve better performance in terms of resolution, coverage, and speed which would be difficult (if not impossible) to implement using traditional, even state-of-the-art electronics. In this tutorial, we overview the distinct features of microwave photonics and some key microwave photonic technologies that are currently known to be attractive for radars. System architectures and their performance that may interest the radar society are emphasized. Emerging technologies in this area and possible future research directions are discussed.

201 citations

Journal ArticleDOI
23 Jun 2020-ACS Nano
TL;DR: This work demonstrates a reconfigurable metasurface that is multifunctional, i.e., notionally capable of providing diverse optical functions in the telecommunication wavelength regime, using a single compact, lightweight, electronically programmable array with no moving parts.
Abstract: Shaping the flow of light at the nanoscale has been a grand challenge for nanophotonics over decades. It is now widely recognized that metasurfaces represent a chip-scale nanophotonics array technology capable of comprehensively controlling the wavefront of light via appropriately configuring subwavelength antenna elements. Here, we demonstrate a reconfigurable metasurface that is multifunctional, i.e., notionally capable of providing diverse optical functions in the telecommunication wavelength regime, using a single compact, lightweight, electronically controlled array with no moving parts. By electro-optical control of the phase of the scattered light from each identical individual metasurface element in an array, we demonstrate a single prototype multifunctional programmable metasurface that is capable of both dynamic beam steering and reconfigurable light focusing. Reconfigurable multifunctional metasurfaces with arrays of tunable optical antennas thus can perform arbitrary optical functions by programmable array-level control of scattered light phase, amplitude, and polarization, similar to dynamic and programmable memories in electronics.

176 citations

Journal ArticleDOI
TL;DR: In this article, high contrast optical filtering using cascaded silicon microrings is demonstrated using transverse electric polarized light (TEL) and the authors report an experimental measurement of a record 100 dB pass-band to stop-band contrast, tunable 12-125 GHz passband full-width at half-maximum, band-center insertion loss ripple, and a group delay ripple.
Abstract: High-contrast optical filtering is demonstrated using cascaded silicon microrings. We report an experimental measurement of a record 100 dB pass-band to stop-band contrast, tunable 12–125 GHz passband full-width at half-maximum, band-center insertion loss ripple ${ , and a group delay ripple ${ , using transverse electric polarized light.

144 citations