scispace - formally typeset
Search or ask a question
Author

Paul W. Chodas

Other affiliations: Arecibo Observatory
Bio: Paul W. Chodas is an academic researcher from California Institute of Technology. The author has contributed to research in topics: Asteroid & Near-Earth object. The author has an hindex of 31, co-authored 87 publications receiving 2663 citations. Previous affiliations of Paul W. Chodas include Arecibo Observatory.
Topics: Asteroid, Near-Earth object, Comet, Radar, Ephemeris


Papers
More filters
Journal ArticleDOI
01 Jun 2014-Icarus
TL;DR: The OSIRIS-REx asteroid sample return mission target, (101955) Bennu (formerly 1999 RQ 36), is a half-kilometer near-Earth asteroid with an extraordinarily well constrained orbit as mentioned in this paper.

238 citations

Journal ArticleDOI
03 Mar 1995-Science
TL;DR: Hubble Space Telescope (HST) images reveal major atmospheric changes created by the collision of comet Shoemaker-Levy 9 with Jupiter and record the overall change in Jupiter's appearance as a result of the bombardment.
Abstract: Hubble Space Telescope (HST) images reveal major atmospheric changes created by the collision of comet Shoemaker-Levy 9 with Jupiter. Plumes rose to 3000 kilometers with ejection velocities on the order of 10 kilometers second-1; some plumes were visible in the shadow of Jupiter before rising into sunlight. During some impacts, the incoming bolide may have been detected. Impact times were on average about 8 minutes later than predicted. Atmospheric waves were seen with a wave front speed of 454 +/- 20 meters second-1. The HST images reveal impact site evolution and record the overall change in Jupiter's appearance as a result of the bombardment.

211 citations

Journal ArticleDOI
27 Jun 2018-Nature
TL;DR: ‘Oumuamua—the first known interstellar object to have entered the Solar System—is probably a comet, albeit with unusual dust and chemical properties owing to its origin in a distant solar system.
Abstract: ‘Oumuamua (1I/2017 U1) is the first known object of interstellar origin to have entered the Solar System on an unbound and hyperbolic trajectory with respect to the Sun1. Various physical observations collected during its visit to the Solar System showed that it has an unusually elongated shape and a tumbling rotation state1–4 and that the physical properties of its surface resemble those of cometary nuclei5,6, even though it showed no evidence of cometary activity1,5,7. The motion of all celestial bodies is governed mostly by gravity, but the trajectories of comets can also be affected by non-gravitational forces due to cometary outgassing8. Because non-gravitational accelerations are at least three to four orders of magnitude weaker than gravitational acceleration, the detection of any deviation from a purely gravity-driven trajectory requires high-quality astrometry over a long arc. As a result, non-gravitational effects have been measured on only a limited subset of the small-body population9. Here we report the detection, at 30σ significance, of non-gravitational acceleration in the motion of ‘Oumuamua. We analyse imaging data from extensive observations by ground-based and orbiting facilities. This analysis rules out systematic biases and shows that all astrometric data can be described once a non-gravitational component representing a heliocentric radial acceleration proportional to r−2 or r−1 (where r is the heliocentric distance) is included in the model. After ruling out solar-radiation pressure, drag- and friction-like forces, interaction with solar wind for a highly magnetized object, and geometric effects originating from ‘Oumuamua potentially being composed of several spatially separated bodies or having a pronounced offset between its photocentre and centre of mass, we find comet-like outgassing to be a physically viable explanation, provided that ‘Oumuamua has thermal properties similar to comets.

185 citations

Journal ArticleDOI
01 Oct 2002-Icarus
TL;DR: A new hazard scale that will describe the risk posed by a particular potential impact in both absolute and relative terms is proposed and described, which reflects the urgency of the situation in a natural way and thus can guide specialists in assessing the computational and observational effort appropriate for a given situation.

182 citations

Journal ArticleDOI
05 Apr 2002-Science
TL;DR: Integration of the orbit of asteroid (29075) 1950 DA, which is based on radar and optical measurements spanning 51 years, reveals a 20-minute interval in March 2880 when there could be a nonnegligible probability of the 1-kilometer object colliding with Earth.
Abstract: Integration of the orbit of asteroid (29075) 1950 DA, which is based on radar and optical measurements spanning 51 years, reveals a 20-minute interval in March 2880 when there could be a nonnegligible probability of the 1-kilometer object colliding with Earth. Trajectory knowledge remains accurate until then because of extensive astrometric data, an inclined orbit geometry that reduces in-plane perturbations, and an orbit uncertainty space modulated by gravitational resonance. The approach distance uncertainty in 2880 is determined primarily by uncertainty in the accelerations arising from thermal re-radiation of solar energy absorbed by the asteroid. Those accelerations depend on the spin axis, composition, and surface properties of the asteroid, so that refining the collision probability may require direct inspection by a spacecraft.

98 citations


Cited by
More filters
Book
01 May 2011
TL;DR: In this paper, the authors present an overview of the solar system and its evolution, including the formation and evolution of stars, asteroids, and free-floating planets, as well as their internal and external structures.
Abstract: 1. Introduction 2. Radial velocities 3. Astrometry 4. Timing 5. Microlensing 6. Transits 7. Imaging 8. Host stars 9. Brown dwarfs and free-floating planets 10. Formation and evolution 11. Interiors and atmospheres 12. The Solar System Appendixes References Index.

527 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a zodiacal cloud model based on the orbital properties and lifetimes of comets and asteroids, and on the dynamical evolution of dust after ejection.
Abstract: The zodiacal cloud is a thick circumsolar disk of small debris particles produced by asteroid collisions and comets. Their relative contribution and how particles of different sizes dynamically evolve to produce the observed phenomena of light scattering, thermal emission, and meteoroid impacts are unknown. Until now, zodiacal cloud models have been phenomenological in nature, composed of ad hoc components with properties not understood from basic physical processes. Here, we present a zodiacal cloud model based on the orbital properties and lifetimes of comets and asteroids, and on the dynamical evolution of dust after ejection. The model is quantitatively constrained by Infrared Astronomical Satellite (IRAS) observations of thermal emission, but also qualitatively consistent with other zodiacal cloud observations, with meteor observations, with spacecraft impact experiments, and with properties of recovered micrometeorites (MMs). We find that particles produced by Jupiterfamily comets (JFCs) are scattered by Jupiter before they are able to orbitally decouple from the planet and drift down to 1 AU. Therefore, the inclination distribution of JFC particles is broader than that of their source comets and leads to good fits to the broad latitudinal distribution of fluxes observed by IRAS. We find that 85%–95% of the observed mid-infrared emission is produced by particles from JFCs and 100 μm undergo a further collisional cascade with smaller fragments being progressively more affected by Poynting–Robertson (PR) drag. Upon reaching D 10 4 times brighter during the Late Heavy Bombardment (LHB) epoch ≈3.8 Gyr ago, when the outer planets scattered numerous comets into the inner solar system. The bright debris disks with a large 24 μm excess observed around mature stars may be an indication of massive cometary populations existing in those systems. We estimate that at least ∼10 22 , ∼2 × 10 21 , and ∼2 × 10 20 go f

490 citations

Journal ArticleDOI
TL;DR: The results demonstrate that the purines detected in meteorites are consistent with products of ammonium cyanide chemistry, which provides a plausible mechanism for their synthesis in the asteroid parent bodies, and strongly supports an extraterrestrial origin.
Abstract: All terrestrial organisms depend on nucleic acids (RNA and DNA), which use pyrimidine and purine nucleobases to encode genetic information. Carbon-rich meteorites may have been important sources of organic compounds required for the emergence of life on the early Earth; however, the origin and formation of nucleobases in meteorites has been debated for over 50 y. So far, the few nucleobases reported in meteorites are biologically common and lacked the structural diversity typical of other indigenous meteoritic organics. Here, we investigated the abundance and distribution of nucleobases and nucleobase analogs in formic acid extracts of 12 different meteorites by liquid chromatography–mass spectrometry. The Murchison and Lonewolf Nunataks 94102 meteorites contained a diverse suite of nucleobases, which included three unusual and terrestrially rare nucleobase analogs: purine, 2,6-diaminopurine, and 6,8-diaminopurine. In a parallel experiment, we found an identical suite of nucleobases and nucleobase analogs generated in reactions of ammonium cyanide. Additionally, these nucleobase analogs were not detected above our parts-per-billion detection limits in any of the procedural blanks, control samples, a terrestrial soil sample, and an Antarctic ice sample. Our results demonstrate that the purines detected in meteorites are consistent with products of ammonium cyanide chemistry, which provides a plausible mechanism for their synthesis in the asteroid parent bodies, and strongly supports an extraterrestrial origin. The discovery of new nucleobase analogs in meteorites also expands the prebiotic molecular inventory available for constructing the first genetic molecules.

449 citations

Journal ArticleDOI
TL;DR: The OSIRIS-REx spacecraft departed for near-Earth asteroid (101955) Bennu via an United Launch Alliance Atlas V 411 evolved expendable launch vehicle at 7:05 p.m. EDT on September 8, 2016, on a seven-year journey to return samples from Bennu as discussed by the authors.
Abstract: In May of 2011, NASA selected the Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer (OSIRIS-REx) asteroid sample return mission as the third mission in the New Frontiers program. The other two New Frontiers missions are New Horizons, which explored Pluto during a flyby in July 2015 and is on its way for a flyby of Kuiper Belt object 2014 MU69 on January 1, 2019, and Juno, an orbiting mission that is studying the origin, evolution, and internal structure of Jupiter. The spacecraft departed for near-Earth asteroid (101955) Bennu aboard an United Launch Alliance Atlas V 411 evolved expendable launch vehicle at 7:05 p.m. EDT on September 8, 2016, on a seven-year journey to return samples from Bennu. The spacecraft is on an outbound-cruise trajectory that will result in a rendezvous with Bennu in November 2018. The science instruments on the spacecraft will survey Bennu to measure its physical, geological, and chemical properties, and the team will use these data to select a site on the surface to collect at least 60 g of asteroid regolith. The team will also analyze the remote-sensing data to perform a detailed study of the sample site for context, assess Bennu’s resource potential, refine estimates of its impact probability with Earth, and provide ground-truth data for the extensive astronomical data set collected on this asteroid. The spacecraft will leave Bennu in 2021 and return the sample to the Utah Test and Training Range (UTTR) on September 24, 2023.

440 citations

Journal ArticleDOI
TL;DR: In this article, a conformal map of the universe illustrating recent discoveries, ranging from Kuiper Belt objects in the solar system to the galaxies and quasars from the Sloan Digital Sky Survey, is presented.
Abstract: We have produced a new conformal map of the universe illustrating recent discoveries, ranging from Kuiper Belt objects in the solar system to the galaxies and quasars from the Sloan Digital Sky Survey. This map projection, based on the logarithm map of the complex plane, preserves shapes locally and yet is able to display the entire range of astronomical scales from the Earth's neighborhood to the cosmic microwave background. The conformal nature of the projection, preserving shapes locally, may be of particular use for analyzing large-scale structure. Prominent in the map is a Sloan Great Wall of galaxies 1.37 billion light-years long, 80% longer than the Great Wall discovered by Geller and Huchra and therefore the largest observed structure in the universe.

426 citations