scispace - formally typeset
Search or ask a question
Author

Paul W. Marshall

Bio: Paul W. Marshall is an academic researcher from Goddard Space Flight Center. The author has contributed to research in topics: Heterojunction bipolar transistor & Single event upset. The author has an hindex of 35, co-authored 194 publications receiving 4863 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A historical review of the literature on the effects of radiation-induced displacement damage in semiconductor materials and devices to provide a guide to displacement damage literature and to offer critical comments regarding that literature in an attempt to identify key findings.
Abstract: This paper provides a historical review of the literature on the effects of radiation-induced displacement damage in semiconductor materials and devices. Emphasis is placed on effects in technologically important bulk silicon and silicon devices. The primary goals are to provide a guide to displacement damage literature, to offer critical comments regarding that literature in an attempt to identify key findings, to describe how the understanding of displacement damage mechanisms and effects has evolved, and to note current trends. Selected tutorial elements are included as an aid to presenting the review information more clearly and to provide a frame of reference for the terminology used. The primary approach employed is to present information qualitatively while leaving quantitative details to the cited references. A bibliography of key displacement-damage information sources is also provided.

607 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of displacement damage caused in several types of silicon bipolar transistors by protons, deuterons, helium ions, and by 1 MeV equivalent neutrons were compared to calculations of nonionizing energy deposition in silicon as a function of particle type and energy.
Abstract: Correlation is made between the effects of displacement damage caused in several types of silicon bipolar transistors by protons, deuterons, helium ions, and by 1 MeV equivalent neutrons. These measurements are compared to calculations of the nonionizing energy deposition in silicon as a function of particle type and energy. Measurements were made of displacement damage factors for 2N2222A and 2N2907A switching transistors, and for 2N3055, 2N6678, and 2N6547 power transistors, as a function of collector current using 3.7 - 175 MeV protons, 4.3 - 37 MeV deuterons, and 16.8 - 65 MeV helium ions. Long term ionization effects on the value of the displacement damage factors were taken into account. In calculating the energy dependence of the nonionizing energy deposition, Rutherford, nuclear elastic, and nuclear inelastic interactions, and Lindhard energy partition were considered. The main conclusions of the work are as follows: 1) The ratio of the displacement damage factors for a given charged particle to the 1 MeV equivalent neutron damage factor, as a function of energy, falls on a common curve which is independent of collector current. 2) Deuterons of a given energy are about twice as damaging as protons and helium ions are about eighteen times as damaging as protons.

177 citations

Journal ArticleDOI
TL;DR: For the SOI SRAMs, a large MBU orientation effect is observed with most of the MBU events occurring along the same SRAM bit-line; allowing ECC circuits to correct most of theseMBU events.
Abstract: Experimental results are presented on single-bit-upsets (SBU) and multiple-bit-upsets (MBU) on a 45 nm SOI SRAM. The accelerated testing results show the SBU-per-bit cross section is relatively constant with technology scaling but the MBU cross section is increasing. The MBU data show the importance of acquiring and analyzing the data with respect to the location of the multiple-bit upsets since the relative location of the cells is important in determining which MBU upsets can be corrected with error correcting code (ECC) circuits. For the SOI SRAMs, a large MBU orientation effect is observed with most of the MBU events occurring along the same SRAM bit-line; allowing ECC circuits to correct most of these MBU events.

161 citations

Journal ArticleDOI
TL;DR: In this paper, a 65 nm silicon-on-insulator (SOI) SRAM was used for single-event upsets (SEU) on a low energy proton SEU.
Abstract: Experimental results are presented on proton induced single-event-upsets (SEU) on a 65 nm silicon-on-insulator (SOI) SRAM. The low energy proton SEU results are very different for the 65 nm SRAM as compared with SRAMs fabricated in previous technology generations. Specifically, no upset threshold is observed as the proton energy is decreased down to 1 MeV; and a sharp rise in the upset cross-section is observed below 1 MeV. The increase below 1 MeV is attributed to upsets caused by direct ionization from the low energy protons. The implications of the low energy proton upsets are discussed for space applications of 65 nm SRAMs; and the implications for radiation assurance testing are also discussed.

147 citations

Journal ArticleDOI
TL;DR: This attempt at circuit level single event effects (SEE) hardening of SiGe HBT logic provides the first reported indication of the level of sensitivity in this important technology.
Abstract: This attempt at circuit level single event effects (SEE) hardening of SiGe HBT logic provides the first reported indication of the level of sensitivity in this important technology, Characterization over data rate up to 3 Gbps and over a broad range of heavy ion LETs provides important clues to upset mechanisms and implications for upset rate predictions. We augment ion test data with pulsed laser SEE testing to indicate the sensitive targets within the circuit and to provide insights into the upset mechanism(s),.

108 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: Physical mechanisms responsible for nondestructive single-event effects in digital microelectronics are reviewed, concentrating on silicon MOS devices and integrated circuits as discussed by the authors, and the impact of technology trends on single event susceptibility and future areas of concern are explored.
Abstract: Physical mechanisms responsible for nondestructive single-event effects in digital microelectronics are reviewed, concentrating on silicon MOS devices and integrated circuits. A brief historical overview of single-event effects in space and terrestrial systems is given, and upset mechanisms in dynamic random access memories, static random access memories, and combinational logic are detailed. Techniques for mitigating single-event upset are described, as well as methods for predicting device and circuit single-event response using computer simulations. The impact of technology trends on single-event susceptibility and future areas of concern are explored.

1,028 citations

Journal ArticleDOI
M. Auvergne1, P. Bodin2, L. Boisnard2, J.-T. Buey1, S. Chaintreuil1, G. Epstein1, M. Jouret2, T. Lam-Trong2, P. Levacher, A. Magnan, R. Perez2, P. Plasson1, J.-Y. Plesseria, Gisbert Peter, M. Steller3, D. Tiphène1, A. Baglin1, P. Agogué2, Thierry Appourchaux4, D. Barbet4, T. Beaufort5, R. Bellenger1, R. Berlin, P. Bernardi1, D. Blouin, Patrick Boumier4, F. Bonneau2, R. Briet2, B. Butler5, R. Cautain, F. Chiavassa2, V. Costes2, J. Cuvilho, V. Cunha-Parro1, F. De Oliveira Fialho1, M. Decaudin4, J.-M. Defise, S. Djalal2, A. Docclo1, R. Drummond6, O. Dupuis1, G. Exil1, C. Fauré2, A. Gaboriaud2, P. Gamet2, P. Gavalda2, E. Grolleau1, L. Gueguen1, V. Guivarc'h1, P. Guterman, J. Hasiba3, G. Huntzinger1, H. Hustaix2, C. Imbert2, G. Jeanville1, B. Johlander5, Laurent Jorda, P. Journoud1, F. Karioty1, L. Kerjean2, L. Lafond2, V. Lapeyrere1, P. Landiech2, T. Larqué2, P. Laudet2, J. Le Merrer, L. Leporati, B. Leruyet1, B. Levieuge1, Antoine Llebaria, L. Martin, E. Mazy, J.-M. Mesnager2, J.-P. Michel1, J.-P. Moalic4, W. Monjoin1, D. Naudet1, S. Neukirchner3, K. Nguyen-Kim4, Marc Ollivier4, J.-L. Orcesi4, H. Ottacher3, A. Oulali1, J. Parisot1, S. Perruchot, A. Piacentino1, L. Pinheiro da Silva1, J. Platzer1, B. Pontet2, A. Pradines2, Céline Quentin, U. Rohbeck, G. Rolland2, F. Rollenhagen, R. Romagnan1, N. Russ, R. Samadi1, R. Schmidt1, N. Schwartz1, I. Sebbag2, H. Smit5, W. Sunter5, M. Tello2, P. Toulouse2, B. Ulmer, O. Vandermarcq2, E. Vergnault2, R. Wallner3, G. Waultier, P. Zanatta1 
TL;DR: In this paper, the authors present a complete overview of the instrument and platform behavior for all environmental conditions for CoRoT, and show that the performance specifications are easily satisfied when the environmental conditions are favorable.
Abstract: Context. CoRoT is a space telescope dedicated to stellar seismology and the search for extrasolar planets. The mission is led by the CNES in association with French laboratories and has a large international participation. The European Space Agency (ESA), Austria, Belgium, and Germany contribute to the payload, and Spain and Brazil contribute to the ground segment. Development of the spacecraft, which is based on a PROTEUS low earth orbit (LEO) recurrent platform, commenced in October 2000, and the satellite was launched on December 27, 2006. Aims. The instrument and platform characteristics prior to launch have been described in ESA publication (SP-1306). In the present paper we explain the behaviour in flight, based on raw and corrected data. Methods. Five runs have been completed since January 2007. The data used here are essentially those acquired during the commissioning phase and from a long run that lasted 146 days. These enable us to give a complete overview of the instrument and platform behaviour for all environmental conditions. The ground based data processing is not described in detail because the most important method has been published elsewhere. Results. We show that the performance specifications are easily satisfied when the environmental conditions are favourable. Most of the perturbations, hence data corrections, are related to LEO perturbations: high energy particles inside the South Atlantic Anomaly (SAA), eclipses and temperature variations, and line of sight fluctuations due to the attitude control system. Straylight due to the reflected light from the earth, which is controlled by the telescope and baffle design, appears to be negligible.

781 citations

Journal ArticleDOI
TL;DR: A historical review of the literature on the effects of radiation-induced displacement damage in semiconductor materials and devices to provide a guide to displacement damage literature and to offer critical comments regarding that literature in an attempt to identify key findings.
Abstract: This paper provides a historical review of the literature on the effects of radiation-induced displacement damage in semiconductor materials and devices. Emphasis is placed on effects in technologically important bulk silicon and silicon devices. The primary goals are to provide a guide to displacement damage literature, to offer critical comments regarding that literature in an attempt to identify key findings, to describe how the understanding of displacement damage mechanisms and effects has evolved, and to note current trends. Selected tutorial elements are included as an aid to presenting the review information more clearly and to provide a frame of reference for the terminology used. The primary approach employed is to present information qualitatively while leaving quantitative details to the cited references. A bibliography of key displacement-damage information sources is also provided.

607 citations

Journal ArticleDOI
TL;DR: The Cosmic Ray on Micro-Electronics (CREME) as mentioned in this paper is a suite of programs for creating numerical models of the ionizing-radiation environment in near-Earth orbits and for evaluating radiation effects in spacecraft.
Abstract: CREME96 is an update of the Cosmic Ray on Micro-Electronics code, a widely-used suite of programs for creating numerical models of the ionizing-radiation environment in near-Earth orbits and for evaluating radiation effects in spacecraft. CREME96, which is now available over the World-Wide Web (WWW) at http://crsp3.nrl.navy.mil/creme96/, has many significant features, including: (1) improved models of the galactic cosmic ray, anomalous cosmic ray, and solar energetic particle ("flare") components of the near-Earth environment; (2) improved geomagnetic transmission calculations; (3) improved nuclear transport routines; (4) improved single-event upset (SEU) calculation techniques, for both proton-induced and direct-ionization-induced SEUs; and (5) an easy-to-use graphical interface, with extensive on-line tutorial information. In this paper we document some of these improvements.

605 citations