scispace - formally typeset
Search or ask a question
Author

Paulo A. Z. Suarez

Bio: Paulo A. Z. Suarez is an academic researcher from University of Brasília. The author has contributed to research in topics: Catalysis & Ionic liquid. The author has an hindex of 43, co-authored 133 publications receiving 11112 citations. Previous affiliations of Paulo A. Z. Suarez include University of Toronto & University of São Paulo.


Papers
More filters
Journal ArticleDOI
TL;DR: The advent of water-soluble organometallic complexes, especially those based on sulfonated phosphorus-containing ligands, has enabled various biphasic catalytic reactions to be conducted on an industrial scale and might combine the advantages of both homogeneous and heterogeneous catalysis.
Abstract: For economical and ecological reasons, synthetic chemists are confronted with the increasing obligation of optimizing their synthetic methods. Maximizing efficiency and minimizing costs in the production of molecules and macromolecules constitutes, therefore, one of the most exciting challenges of synthetic chemistry.1-3 The ideal synthesis should produce the desired product in 100% yield and selectivity, in a safe and environmentally acceptable process.4 It is now well recognized that organometallic homogeneous catalysis offers one of the most promising approaches for solving this basic problem.2 Indeed, many of these homogeneous processes occur in high yields and selectivities and under mild reaction conditions. Most importantly, the steric and electronic properties of these catalysts can be tuned by varying the metal center and/or the ligands, thus rendering tailor-made molecular and macromolecular structures accessible.5,6 Despite the fact that various efficient methods, based on organometallic homogeneous catalysis, have been developed over the last 30 years on the laboratory scale, the industrial use of homogeneous catalytic processes is relatively limited.7 The separation of the products from the reaction mixture, the recovery of the catalysts, and the need for organic solvents are the major disadvantages in the homogeneous catalytic process. For these reasons, many homogeneous processes are not used on an industrial scale despite their benefits. Among the various approaches to address these problems, liquidliquid biphasic catalysis (“biphasic catalysis”) has emerged as one of the most important alternatives.6-11 The concept of this system implies that the molecular catalyst is soluble in only one phase whereas the substrates/products remain in the other phase. The reaction can take place in one (or both) of the phases or at the interface. In most cases, the catalyst phase can be reused and the products/substrates are simply removed from the reaction mixture by decantation. Moreover, in these biphasic systems it is possible to extract the primary products during the reaction and thus modulate the product selectivity.12 For a detailed discussion about this and other concepts of homogeneous catalyst immobilization, the reader is referred elsewhere.6,7 These biphasic systems might combine the advantages of both homogeneous (greater catalyst efficiency and mild reaction conditions) and heterogeneous (ease of catalyst recycling and separation of the products) catalysis. The advent of water-soluble organometallic complexes, especially those based on sulfonated phosphorus-containing ligands, has enabled various biphasic catalytic reactions to be conducted on an industrial scale.13-15 However, the use of water as a * Corresponding author. Fax: ++ 55 51 3316 73 04. E-mail: dupont@iq.ufrgs.br. 3667 Chem. Rev. 2002, 102, 3667−3692

3,483 citations

Journal ArticleDOI
TL;DR: The reaction of 1-n-butyl-3-methylimidazolium chloride (BMIC) with sodium tetrafluoroborate or sodium hexafluorophosphate produced the room temperature-, air-and water-stable molten salts (BMI+)(BF4−) (1) and (bMI+(PF6−)(2), respectively, in almost quantitative yield as discussed by the authors.

658 citations

Journal ArticleDOI
TL;DR: In this article, the electrochemical properties of room temperature ionic liquids 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM+BF4−), 1-methyl-3]-2,6-(S)-dimethyl-p-phenylenediamine (MV2+) and reduction of anionic hexacyanoferrate(III), Fe(CN)63− have been determined as a function of the water content of the ionic liquid.
Abstract: The electrochemical properties of the room temperature ionic liquids 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM+BF4−), 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM+PF6−) and 1-methyl-3-[2,6-(S)-dimethylocten-2-yl]imidazolium tetrafluoroborate (MDIM+BF4−) as solvents have been studied using micro-samples, with a volume of 10 μL, of the ionic liquids under vacuum conditions and under conditions with controlled gas and moisture supplies. The impact of water—absorbed into the ionic liquid in a controlled manner from the gas phase—on the voltammetry of dissolved redox systems and on the accessible potential window of the ionic liquids was investigated. The diffusion coefficients for three representative redox systems, the oxidation of neutral N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD), the reduction of cationic methyl viologen (MV2+) and reduction of anionic hexacyanoferrate(III), Fe(CN)63−, have been determined as a function of the water content of the ionic liquids. Water is shown to have a much more dramatic acceleration effect on the diffusion of the ionic compounds compared to its effect on neutral species in ionic liquids. A model based on nanoscale structural features of wet ionic liquid materials is proposed. The novel methodology, which employs redox-active compounds dissolved or partitioned in microdroplets of ionic liquid, uses conditions suitable for the study of ionic liquids for applications in electrochemical gas phase reactors and gas sensor systems.

507 citations

Journal ArticleDOI
TL;DR: The reaction of 1-n-butyl-3-methylimidazolium chloride (BMI) with sodium tetrafluoroborate or sodium hexafluorophosphate affords the molten salts BMI as mentioned in this paper.
Abstract: The reaction of 1-n-butyl-3-methylimidazolium chloride (BMI.Cl) with sodium tetrafluoroborate or sodium hexafluorophosphate affords the molten salts BMI.X ( 1 , X= BF 4 and 2 , X= PF 6 ). Compounds 1 and 2 are viscous liquids within a wide range of temperature (down to 192 K). IR, NMR, density, viscosity and conductivity measurements suggest that compound 2 behaves quasi-molecular. Compound 1 is quasi-molecular below 279 K, but at higher temperatures is probably composed of imidazolium and tetrafluoroborate ions in an extended hydrogen-bonded network.

400 citations

Reference EntryDOI
TL;DR: P 1-Butyl-3-methylimidazolium tetrafluoroborate (BTLT) as discussed by the authors ) is a possible carcinogen, possibly carcinogen.
Abstract: P 1-Butyl-3-methylimidazolium tetrafluoroborate 1-Butyl-3-methylimidazolium hexafluorophosphate R 1-Butyl-3-methylimidazolium chloride Potassium hexafluorophosphate P 1-Butyl-3-methylimidazolium hexafluorophosphate Keywords: heterocycles, five-membered, two nitrogens; halogen compounds, chlorine compounds; alkylation, N-alkylation; 1-chlorobutane, irritant, possible carcinogen; 1-chlorobutane; heterocycles, five-membered, two nitrogens; halogen compounds, fluorine compounds; replacement reactions, halogen by various groups; heterocycles, five-membered, two nitrogens; halogen compounds, fluorine compounds; replacement reactions, halogen by various groups

400 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Hydrogen Production by Water−Gas Shift Reaction 4056 4.1.
Abstract: 1.0. Introduction 4044 2.0. Biomass Chemistry and Growth Rates 4047 2.1. Lignocellulose and Starch-Based Plants 4047 2.2. Triglyceride-Producing Plants 4049 2.3. Algae 4050 2.4. Terpenes and Rubber-Producing Plants 4052 3.0. Biomass Gasification 4052 3.1. Gasification Chemistry 4052 3.2. Gasification Reactors 4054 3.3. Supercritical Gasification 4054 3.4. Solar Gasification 4055 3.5. Gas Conditioning 4055 4.0. Syn-Gas Utilization 4056 4.1. Hydrogen Production by Water−Gas Shift Reaction 4056

7,067 citations

Journal ArticleDOI
TL;DR: There are indications that switching from a normal organic solvent to an ionic liquid can lead to novel and unusual chemical reactivity, which opens up a wide field for future investigations into this new class of solvents in catalytic applications.
Abstract: Ionic liquids are salts that are liquid at low temperature (<100 degrees C) which represent a new class of solvents with nonmolecular, ionic character. Even though the first representative has been known since 1914, ionic liquids have only been investigated as solvents for transition metal catalysis in the past ten years. Publications to date show that replacing an organic solvent by an ionic liquid can lead to remarkable improvements in well-known processes. Ionic liquids form biphasic systems with many organic product mixtures. This gives rise to the possibility of a multiphase reaction procedure with easy isolation and recovery of homogeneous catalysts. In addition, ionic liquids have practically no vapor pressure which facilitates product separation by distillation. There are also indications that switching from a normal organic solvent to an ionic liquid can lead to novel and unusual chemical reactivity. This opens up a wide field for future investigations into this new class of solvents in catalytic applications.

5,387 citations

Journal ArticleDOI
TL;DR: The advent of water-soluble organometallic complexes, especially those based on sulfonated phosphorus-containing ligands, has enabled various biphasic catalytic reactions to be conducted on an industrial scale and might combine the advantages of both homogeneous and heterogeneous catalysis.
Abstract: For economical and ecological reasons, synthetic chemists are confronted with the increasing obligation of optimizing their synthetic methods. Maximizing efficiency and minimizing costs in the production of molecules and macromolecules constitutes, therefore, one of the most exciting challenges of synthetic chemistry.1-3 The ideal synthesis should produce the desired product in 100% yield and selectivity, in a safe and environmentally acceptable process.4 It is now well recognized that organometallic homogeneous catalysis offers one of the most promising approaches for solving this basic problem.2 Indeed, many of these homogeneous processes occur in high yields and selectivities and under mild reaction conditions. Most importantly, the steric and electronic properties of these catalysts can be tuned by varying the metal center and/or the ligands, thus rendering tailor-made molecular and macromolecular structures accessible.5,6 Despite the fact that various efficient methods, based on organometallic homogeneous catalysis, have been developed over the last 30 years on the laboratory scale, the industrial use of homogeneous catalytic processes is relatively limited.7 The separation of the products from the reaction mixture, the recovery of the catalysts, and the need for organic solvents are the major disadvantages in the homogeneous catalytic process. For these reasons, many homogeneous processes are not used on an industrial scale despite their benefits. Among the various approaches to address these problems, liquidliquid biphasic catalysis (“biphasic catalysis”) has emerged as one of the most important alternatives.6-11 The concept of this system implies that the molecular catalyst is soluble in only one phase whereas the substrates/products remain in the other phase. The reaction can take place in one (or both) of the phases or at the interface. In most cases, the catalyst phase can be reused and the products/substrates are simply removed from the reaction mixture by decantation. Moreover, in these biphasic systems it is possible to extract the primary products during the reaction and thus modulate the product selectivity.12 For a detailed discussion about this and other concepts of homogeneous catalyst immobilization, the reader is referred elsewhere.6,7 These biphasic systems might combine the advantages of both homogeneous (greater catalyst efficiency and mild reaction conditions) and heterogeneous (ease of catalyst recycling and separation of the products) catalysis. The advent of water-soluble organometallic complexes, especially those based on sulfonated phosphorus-containing ligands, has enabled various biphasic catalytic reactions to be conducted on an industrial scale.13-15 However, the use of water as a * Corresponding author. Fax: ++ 55 51 3316 73 04. E-mail: dupont@iq.ufrgs.br. 3667 Chem. Rev. 2002, 102, 3667−3692

3,483 citations

Journal ArticleDOI
TL;DR: s, or keywords if they used Heck-type chemistry in their syntheses, because it became one of basic tools of organic preparations, a natural way to make organic preparations.
Abstract: s, or keywords if they used Heck-type chemistry in their syntheses, because it became one of basic tools of organic preparations, a natural way to

3,373 citations