scispace - formally typeset
Search or ask a question
Author

Paulo Tabuada

Bio: Paulo Tabuada is an academic researcher from University of California, Los Angeles. The author has contributed to research in topics: Control system & Control theory. The author has an hindex of 60, co-authored 288 publications receiving 20444 citations. Previous affiliations of Paulo Tabuada include University of California, Berkeley & Instituto Superior Técnico.


Papers
More filters
Posted Content
TL;DR: In this paper, the authors present a technique for the computation of the execution instants by exploiting the concept of isochronous manifolds, also introduced in this paper, which is applicable to any smooth control system.
Abstract: Event-triggered control and self-triggered control have been recently proposed as new implementation paradigms that reduce resource usage for control systems. In self-triggered control, the controller is augmented with the computation of the next time instant at which the feedback control law is to be recomputed. Since these execution instants are obtained as a function of the plant state, we effectively close the loop only when it is required to maintain the desired performance, thereby greatly reducing the resources required for control. In this paper we present a new technique for the computation of the execution instants by exploiting the concept of isochronous manifolds, also introduced in this paper. While our previous results showed how homogeneity can be used to compute the execution instants along some directions in the state space, the concept of isochrony allows us to compute the executions instants along every direction in the state space. Moreover, we also show in this paper how to homogenize smooth control systems thus making our results applicable to any smooth control system. The benefits of the proposed approach with respect to existing techniques are analyzed in two examples.

43 citations

Proceedings ArticleDOI
01 Jan 2016
TL;DR: In this article, the authors propose a robust version of the LTL fragment that only contains the always and eventually temporal operators, and apply it to the problem of specifying robustness in temporal logic.
Abstract: Although it is widely accepted that every system should be robust, in the sense that "small" violations of environment assumptions should lead to "small" violations of system guarantees, it is less clear how to make this intuitive notion of robustness mathematically precise. In this paper, we address the problem of how to specify robustness in temporal logic. Our solution consists of a robust version of the Linear Temporal Logic (LTL) fragment that only contains the always and eventually temporal operators.

42 citations

Journal ArticleDOI
TL;DR: This paper shows how to perform Kron reduction for a class of electrical networks, called homogeneous Electrical networks, without steady state assumptions, and the reduced models can be used to analyze the transient as well as the steady state behavior of these electrical networks.

42 citations

Journal ArticleDOI
TL;DR: In this paper, a cloud-based protocol for a constrained quadratic optimization problem involving multiple parties, each holding private data, is proposed, based on the projected gradient ascent on the Lagrange dual problem and exploits partially homomorphic encryption and secure communication techniques.
Abstract: This article develops a cloud-based protocol for a constrained quadratic optimization problem involving multiple parties, each holding private data. The protocol is based on the projected gradient ascent on the Lagrange dual problem and exploits partially homomorphic encryption and secure communication techniques. Using formal cryptographic definitions of indistinguishability, the protocol is shown to achieve computational privacy. We show the implementation results of the protocol and discuss its computational and communication complexity. We conclude this article with a discussion on privacy notions.

42 citations

Book ChapterDOI
25 Mar 2002
TL;DR: This paper presents a composition operator that allows synchronization on inputs and states of hybrid systems and shows that the composition operator is compatible with the abstraction framework in the sense that abstracting subsystems will the result in an abstraction of the overall system.
Abstract: The analysis and design of hybrid systems must exploit their hierarchical and compositional nature of in order to tackle complexity. In previous work, we presented a hierarchical abstraction framework for hybrid control systems based on the notions of simulation and bisimulation. In this paper, we build upon our previous work and investigate the compositionality of our abstraction framework. We present a composition operator that allows synchronization on inputs and states of hybrid systems. We then show that the composition operator is compatible with our abstraction framework in the sense that abstracting subsystems will the result in an abstraction of the overall system.

40 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: A Nyquist criterion is proved that uses the eigenvalues of the graph Laplacian matrix to determine the effect of the communication topology on formation stability, and a method for decentralized information exchange between vehicles is proposed.
Abstract: We consider the problem of cooperation among a collection of vehicles performing a shared task using intervehicle communication to coordinate their actions. Tools from algebraic graph theory prove useful in modeling the communication network and relating its topology to formation stability. We prove a Nyquist criterion that uses the eigenvalues of the graph Laplacian matrix to determine the effect of the communication topology on formation stability. We also propose a method for decentralized information exchange between vehicles. This approach realizes a dynamical system that supplies each vehicle with a common reference to be used for cooperative motion. We prove a separation principle that decomposes formation stability into two components: Stability of this is achieved information flow for the given graph and stability of an individual vehicle for the given controller. The information flow can thus be rendered highly robust to changes in the graph, enabling tight formation control despite limitations in intervehicle communication capability.

4,377 citations

Journal ArticleDOI
TL;DR: This note investigates a simple event-triggered scheduler based on the paradigm that a real-time scheduler could be regarded as a feedback controller that decides which task is executed at any given instant and shows how it leads to guaranteed performance thus relaxing the more traditional periodic execution requirements.
Abstract: In this note, we revisit the problem of scheduling stabilizing control tasks on embedded processors. We start from the paradigm that a real-time scheduler could be regarded as a feedback controller that decides which task is executed at any given instant. This controller has for objective guaranteeing that (control unrelated) software tasks meet their deadlines and that stabilizing control tasks asymptotically stabilize the plant. We investigate a simple event-triggered scheduler based on this feedback paradigm and show how it leads to guaranteed performance thus relaxing the more traditional periodic execution requirements.

3,695 citations

Journal ArticleDOI
07 Aug 2002
TL;DR: In this paper, the authors describe decentralized control laws for the coordination of multiple vehicles performing spatially distributed tasks, which are based on a gradient descent scheme applied to a class of decentralized utility functions that encode optimal coverage and sensing policies.
Abstract: This paper describes decentralized control laws for the coordination of multiple vehicles performing spatially distributed tasks. The control laws are based on a gradient descent scheme applied to a class of decentralized utility functions that encode optimal coverage and sensing policies. These utility functions are studied in geographical optimization problems and they arise naturally in vector quantization and in sensor allocation tasks. The approach exploits the computational geometry of spatial structures such as Voronoi diagrams.

2,445 citations

Posted Content
TL;DR: This paper proposes gradient descent algorithms for a class of utility functions which encode optimal coverage and sensing policies which are adaptive, distributed, asynchronous, and verifiably correct.
Abstract: This paper presents control and coordination algorithms for groups of vehicles. The focus is on autonomous vehicle networks performing distributed sensing tasks where each vehicle plays the role of a mobile tunable sensor. The paper proposes gradient descent algorithms for a class of utility functions which encode optimal coverage and sensing policies. The resulting closed-loop behavior is adaptive, distributed, asynchronous, and verifiably correct.

2,198 citations