scispace - formally typeset
Search or ask a question
Author

Pavel Kuznetsov

Bio: Pavel Kuznetsov is an academic researcher from Samara State University. The author has contributed to research in topics: Bronze Age & Population. The author has an hindex of 9, co-authored 18 publications receiving 2405 citations.

Papers
More filters
Journal ArticleDOI
11 Jun 2015-Nature
TL;DR: In this paper, the authors generated genome-wide data from 69 Europeans who lived between 8,000-3,000 years ago by enriching ancient DNA libraries for a target set of almost 400,000 polymorphisms.
Abstract: We generated genome-wide data from 69 Europeans who lived between 8,000-3,000 years ago by enriching ancient DNA libraries for a target set of almost 400,000 polymorphisms. Enrichment of these positions decreases the sequencing required for genome-wide ancient DNA analysis by a median of around 250-fold, allowing us to study an order of magnitude more individuals than previous studies and to obtain new insights about the past. We show that the populations of Western and Far Eastern Europe followed opposite trajectories between 8,000-5,000 years ago. At the beginning of the Neolithic period in Europe, ∼8,000-7,000 years ago, closely related groups of early farmers appeared in Germany, Hungary and Spain, different from indigenous hunter-gatherers, whereas Russia was inhabited by a distinctive population of hunter-gatherers with high affinity to a ∼24,000-year-old Siberian. By ∼6,000-5,000 years ago, farmers throughout much of Europe had more hunter-gatherer ancestry than their predecessors, but in Russia, the Yamnaya steppe herders of this time were descended not only from the preceding eastern European hunter-gatherers, but also from a population of Near Eastern ancestry. Western and Eastern Europe came into contact ∼4,500 years ago, as the Late Neolithic Corded Ware people from Germany traced ∼75% of their ancestry to the Yamnaya, documenting a massive migration into the heartland of Europe from its eastern periphery. This steppe ancestry persisted in all sampled central Europeans until at least ∼3,000 years ago, and is ubiquitous in present-day Europeans. These results provide support for a steppe origin of at least some of the Indo-European languages of Europe.

1,332 citations

Journal ArticleDOI
24 Dec 2015-Nature
TL;DR: A genome-wide scan for selection using ancient DNA is reported, capitalizing on the largest ancient DNA data set yet assembled: 230 West Eurasians who lived between 6500 and 300 bc, including 163 with newly reported data.
Abstract: Ancient DNA makes it possible to observe natural selection directly by analysing samples from populations before, during and after adaptation events. Here we report a genome-wide scan for selection using ancient DNA, capitalizing on the largest ancient DNA data set yet assembled: 230 West Eurasians who lived between 6500 and 300 bc, including 163 with newly reported data. The new samples include, to our knowledge, the first genome-wide ancient DNA from Anatolian Neolithic farmers, whose genetic material we obtained by extracting from petrous bones, and who we show were members of the population that was the source of Europe's first farmers. We also report a transect of the steppe region in Samara between 5600 and 300 bc, which allows us to identify admixture into the steppe from at least two external sources. We detect selection at loci associated with diet, pigmentation and immunity, and two independent episodes of selection on height.

1,083 citations

Journal ArticleDOI
Vagheesh M. Narasimhan1, Nick Patterson2, Nick Patterson3, Priya Moorjani4, Nadin Rohland1, Nadin Rohland2, Rebecca Bernardos1, Swapan Mallick5, Swapan Mallick1, Swapan Mallick2, Iosif Lazaridis1, Nathan Nakatsuka6, Nathan Nakatsuka1, Iñigo Olalde1, Mark Lipson1, Alexander M. Kim1, Luca M. Olivieri, Alfredo Coppa7, Massimo Vidale8, James Mallory9, Vyacheslav Moiseyev10, Egor Kitov11, Egor Kitov10, Janet Monge12, Nicole Adamski1, Nicole Adamski5, Neel Alex4, Nasreen Broomandkhoshbacht1, Nasreen Broomandkhoshbacht5, Francesca Candilio13, Kimberly Callan1, Kimberly Callan5, Olivia Cheronet13, Olivia Cheronet14, Brendan J. Culleton15, Matthew Ferry5, Matthew Ferry1, Daniel Fernandes, Suzanne Freilich14, Beatriz Gamarra13, Daniel Gaudio13, Mateja Hajdinjak16, Eadaoin Harney5, Eadaoin Harney1, Thomas K. Harper15, Denise Keating13, Ann Marie Lawson5, Ann Marie Lawson1, Matthew Mah5, Matthew Mah1, Matthew Mah2, Kirsten Mandl14, Megan Michel5, Megan Michel1, Mario Novak13, Jonas Oppenheimer5, Jonas Oppenheimer1, Niraj Rai17, Niraj Rai18, Kendra Sirak13, Kendra Sirak1, Kendra Sirak19, Viviane Slon16, Kristin Stewardson1, Kristin Stewardson5, Fatma Zalzala1, Fatma Zalzala5, Zhao Zhang1, Gaziz Akhatov, Anatoly N. Bagashev, Alessandra Bagnera, Bauryzhan Baitanayev, Julio Bendezu-Sarmiento20, Arman A. Bissembaev, Gian Luca Bonora, T Chargynov21, T. A. Chikisheva10, Petr K. Dashkovskiy22, Anatoly P. Derevianko10, Miroslav Dobeš23, Katerina Douka24, Katerina Douka16, Nadezhda Dubova10, Meiram N. Duisengali, Dmitry Enshin, Andrey Epimakhov25, Alexey Fribus26, Dorian Q. Fuller27, Dorian Q. Fuller28, Alexander Goryachev, Andrey Gromov10, S. P. Grushin22, Bryan Hanks29, Margaret A. Judd29, Erlan Kazizov, Aleksander Khokhlov30, Aleksander P. Krygin, Elena Kupriyanova31, Pavel Kuznetsov30, Donata Luiselli32, Farhod Maksudov33, Aslan M. Mamedov, Talgat B. Mamirov, Christopher Meiklejohn34, Deborah C. Merrett35, Roberto Micheli, Oleg Mochalov30, Samariddin Mustafokulov33, Ayushi Nayak16, Davide Pettener32, Richard Potts36, Dmitry Razhev, Marina Petrovna Rykun37, Stefania Sarno32, Tatyana M. Savenkova, Kulyan Sikhymbaeva, Sergey Mikhailovich Slepchenko, Oroz A. Soltobaev21, Nadezhda Stepanova10, Svetlana V. Svyatko10, Svetlana V. Svyatko9, Kubatbek Tabaldiev, Maria Teschler-Nicola14, Maria Teschler-Nicola38, Alexey A. Tishkin22, Vitaly V. Tkachev, Sergey Vasilyev10, Petr Velemínský39, Dmitriy Voyakin, Antonina Yermolayeva, Muhammad Zahir16, Muhammad Zahir40, Valery S. Zubkov, A. V. Zubova10, Vasant Shinde41, Carles Lalueza-Fox42, Matthias Meyer16, David W. Anthony43, Nicole Boivin16, Kumarasamy Thangaraj18, Douglas J. Kennett44, Douglas J. Kennett15, Michael D. Frachetti45, Ron Pinhasi14, Ron Pinhasi13, David Reich 
06 Sep 2019-Science
TL;DR: It is shown that Steppe ancestry then integrated further south in the first half of the second millennium BCE, contributing up to 30% of the ancestry of modern groups in South Asia, supporting the idea that the archaeologically documented dispersal of domesticates was accompanied by the spread of people from multiple centers of domestication.
Abstract: By sequencing 523 ancient humans, we show that the primary source of ancestry in modern South Asians is a prehistoric genetic gradient between people related to early hunter-gatherers of Iran and Southeast Asia. After the Indus Valley Civilization's decline, its people mixed with individuals in the southeast to form one of the two main ancestral populations of South Asia, whose direct descendants live in southern India. Simultaneously, they mixed with descendants of Steppe pastoralists who, starting around 4000 years ago, spread via Central Asia to form the other main ancestral population. The Steppe ancestry in South Asia has the same profile as that in Bronze Age Eastern Europe, tracking a movement of people that affected both regions and that likely spread the distinctive features shared between Indo-Iranian and Balto-Slavic languages.

354 citations

Journal ArticleDOI
Antoine Fages1, Antoine Fages2, Kristian Hanghøj2, Kristian Hanghøj1, Naveed Khan1, Naveed Khan3, Charleen Gaunitz1, Andaine Seguin-Orlando1, Andaine Seguin-Orlando2, Michela Leonardi1, Michela Leonardi4, Christian McCrory Constantz1, Christian McCrory Constantz5, Cristina Gamba1, Khaled A. S. Al-Rasheid6, Silvia Albizuri7, Ahmed H. Alfarhan6, Morten E. Allentoft1, Saleh A. Alquraishi6, David W. Anthony8, Nurbol Baimukhanov, James H. Barrett9, Jamsranjav Bayarsaikhan, Norbert Benecke10, Eloísa Bernáldez-Sánchez, Luis Berrocal-Rangel11, Fereidoun Biglari, Sanne Boessenkool12, Bazartseren Boldgiv13, Gottfried Brem14, Dorcas Brown8, Joachim Burger15, Eric Crubézy2, Linas Daugnora, Hossein Davoudi16, Peter Barros de Damgaard1, María los Ángeles Chorro y de de de Villa-Ceballos17, Sabine Deschler-Erb, Cleia Detry18, Nadine Dill, Maria do Mar Oom18, Anna Dohr19, Sturla Ellingvåg, Diimaajav Erdenebaatar, Homa Fathi20, Sabine Felkel14, Carlos Fernández-Rodríguez21, Esteban García-Viñas22, Mietje Germonpré23, José D. Granado, Jón Hallsteinn Hallsson24, Helmut Hemmer15, Michael Hofreiter25, Aleksei Kasparov26, Mutalib Khasanov, Roya Khazaeli20, Pavel A. Kosintsev26, Kristian Kristiansen27, Tabaldiev Kubatbek, Lukas F. K. Kuderna28, Pavel Kuznetsov29, Haeedeh Laleh20, Jennifer A. Leonard17, Johanna Lhuillier, Corina Liesau von Lettow-Vorbeck11, Andrey Logvin, Lembi Lõugas30, Arne Ludwig31, Arne Ludwig32, Cristina Luís33, Cristina Luís18, Ana Margarida Arruda18, Tomas Marques-Bonet, Raquel Matoso Silva33, Victor Merz, Enkhbayar Mijiddorj, Bryan K. Miller34, Oleg Monchalov29, Fatemeh Azadeh Mohaseb20, Fatemeh Azadeh Mohaseb35, Arturo Morales11, Ariadna Nieto-Espinet17, Heidi Nistelberger12, Vedat Onar36, Albína Hulda Pálsdóttir12, Albína Hulda Pálsdóttir24, Vladimir V. Pitulko26, Konstantin Pitskhelauri37, Mélanie Pruvost38, Petra Rajic Sikanjic, Anita Rapan Papeša, Natalia Roslyakova29, Alireza Sardari39, Eberhard Sauer40, Renate Schafberg41, Amelie Scheu15, Jörg Schibler, Angela Schlumbaum, Nathalie Serrand35, Aitor Serres-Armero28, Beth Shapiro42, Shiva Sheikhi Seno20, Shiva Sheikhi Seno35, Irina Shevnina, Sonia Shidrang43, John Southon44, Bastiaan Star12, Naomi Sykes45, Naomi Sykes46, Kamal Taheri, William Timothy Treal Taylor47, Wolf-Rüdiger Teegen19, Tajana Trbojević Vukičević48, Simon Trixl19, Dashzeveg Tumen13, Sainbileg Undrakhbold13, Emma Usmanova49, Ali A. Vahdati39, Silvia Valenzuela-Lamas17, Catarina Viegas18, Barbara Wallner14, Jaco Weinstock50, Victor Zaibert51, Benoît Clavel35, Sébastien Lepetz35, Marjan Mashkour35, Marjan Mashkour20, Agnar Helgason52, Kari Stefansson52, Eric Barrey53, Eske Willerslev1, Alan K. Outram45, Pablo Librado1, Pablo Librado2, Ludovic Orlando1, Ludovic Orlando2 
University of Copenhagen1, Paul Sabatier University2, Abdul Wali Khan University Mardan3, University of Cambridge4, Stanford University5, King Saud University6, University of Barcelona7, Hartwick College8, McDonald Institute for Archaeological Research9, Deutsches Archäologisches Institut10, Autonomous University of Madrid11, University of Oslo12, National University of Mongolia13, University of Vienna14, University of Mainz15, Tarbiat Modares University16, Spanish National Research Council17, University of Lisbon18, Ludwig Maximilian University of Munich19, University of Tehran20, Facultad de Filosofía y Letras21, Pablo de Olavide University22, Royal Belgian Institute of Natural Sciences23, Agricultural University of Iceland24, University of Potsdam25, Russian Academy of Sciences26, University of Gothenburg27, Pompeu Fabra University28, Samara State University29, Tallinn University30, Humboldt University of Berlin31, Leibniz Association32, ISCTE – University Institute of Lisbon33, University of Oxford34, Centre national de la recherche scientifique35, Istanbul University36, Tbilisi State University37, University of Bordeaux38, Indian Council of Agricultural Research39, University of Edinburgh40, Martin Luther University of Halle-Wittenberg41, University of California, Santa Cruz42, University of Kashan43, University of California, Irvine44, University of Exeter45, University of Nottingham46, Max Planck Society47, University of Zagreb48, Karagandy State University49, University of Southampton50, Al-Farabi University51, deCODE genetics52, Université Paris-Saclay53
30 May 2019-Cell
TL;DR: This extensive dataset allows us to assess the modern legacy of past equestrian civilizations and finds that two extinct horse lineages existed during early domestication, and the development of modern breeding impacted genetic diversity more dramatically than the previous millennia of human management.

174 citations

Journal ArticleDOI
Pablo Librado1, Naveed Khan2, Naveed Khan1, Antoine Fages1  +175 moreInstitutions (72)
01 Jan 2021-Nature
TL;DR: In this article, the authors identify the Western Eurasian steppes, especially the lower Volga-Don region, as the homeland of modern domestic horses and map the population changes accompanying domestication from 273 ancient horse genomes.
Abstract: Domestication of horses fundamentally transformed long-range mobility and warfare1. However, modern domesticated breeds do not descend from the earliest domestic horse lineage associated with archaeological evidence of bridling, milking and corralling2–4 at Botai, Central Asia around 3500 bc3. Other longstanding candidate regions for horse domestication, such as Iberia5 and Anatolia6, have also recently been challenged. Thus, the genetic, geographic and temporal origins of modern domestic horses have remained unknown. Here we pinpoint the Western Eurasian steppes, especially the lower Volga-Don region, as the homeland of modern domestic horses. Furthermore, we map the population changes accompanying domestication from 273 ancient horse genomes. This reveals that modern domestic horses ultimately replaced almost all other local populations as they expanded rapidly across Eurasia from about 2000 bc, synchronously with equestrian material culture, including Sintashta spoke-wheeled chariots. We find that equestrianism involved strong selection for critical locomotor and behavioural adaptations at the GSDMC and ZFPM1 genes. Our results reject the commonly held association7 between horseback riding and the massive expansion of Yamnaya steppe pastoralists into Europe around 3000 bc8,9 driving the spread of Indo-European languages10. This contrasts with the scenario in Asia where Indo-Iranian languages, chariots and horses spread together, following the early second millennium bc Sintashta culture11,12. Analysis of 273 ancient horse genomes reveals that modern domestic horses originated in the Western Eurasian steppes, especially the lower Volga-Don region.

83 citations


Cited by
More filters
01 Jan 2010
TL;DR: In this paper, the authors show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait, revealing patterns with important implications for genetic studies of common human diseases and traits.
Abstract: Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

1,751 citations

Journal ArticleDOI
TL;DR: Some of the key events in the peopling of the world in the light of the findings of work on ancient DNA are reviewed.
Abstract: Ancient DNA research is revealing a human history far more complex than that inferred from parsimonious models based on modern DNA. Here, we review some of the key events in the peopling of the world in the light of the findings of work on ancient DNA.

1,365 citations

Journal ArticleDOI
11 Jun 2015-Nature
TL;DR: In this paper, the authors generated genome-wide data from 69 Europeans who lived between 8,000-3,000 years ago by enriching ancient DNA libraries for a target set of almost 400,000 polymorphisms.
Abstract: We generated genome-wide data from 69 Europeans who lived between 8,000-3,000 years ago by enriching ancient DNA libraries for a target set of almost 400,000 polymorphisms. Enrichment of these positions decreases the sequencing required for genome-wide ancient DNA analysis by a median of around 250-fold, allowing us to study an order of magnitude more individuals than previous studies and to obtain new insights about the past. We show that the populations of Western and Far Eastern Europe followed opposite trajectories between 8,000-5,000 years ago. At the beginning of the Neolithic period in Europe, ∼8,000-7,000 years ago, closely related groups of early farmers appeared in Germany, Hungary and Spain, different from indigenous hunter-gatherers, whereas Russia was inhabited by a distinctive population of hunter-gatherers with high affinity to a ∼24,000-year-old Siberian. By ∼6,000-5,000 years ago, farmers throughout much of Europe had more hunter-gatherer ancestry than their predecessors, but in Russia, the Yamnaya steppe herders of this time were descended not only from the preceding eastern European hunter-gatherers, but also from a population of Near Eastern ancestry. Western and Eastern Europe came into contact ∼4,500 years ago, as the Late Neolithic Corded Ware people from Germany traced ∼75% of their ancestry to the Yamnaya, documenting a massive migration into the heartland of Europe from its eastern periphery. This steppe ancestry persisted in all sampled central Europeans until at least ∼3,000 years ago, and is ubiquitous in present-day Europeans. These results provide support for a steppe origin of at least some of the Indo-European languages of Europe.

1,332 citations

Journal ArticleDOI
11 Jun 2015-Nature
TL;DR: It is shown that the Bronze Age was a highly dynamic period involving large-scale population migrations and replacements, responsible for shaping major parts of present-day demographic structure in both Europe and Asia.
Abstract: The Bronze Age of Eurasia (around 3000-1000 BC) was a period of major cultural changes. However, there is debate about whether these changes resulted from the circulation of ideas or from human migrations, potentially also facilitating the spread of languages and certain phenotypic traits. We investigated this by using new, improved methods to sequence low-coverage genomes from 101 ancient humans from across Eurasia. We show that the Bronze Age was a highly dynamic period involving large-scale population migrations and replacements, responsible for shaping major parts of present-day demographic structure in both Europe and Asia. Our findings are consistent with the hypothesized spread of Indo-European languages during the Early Bronze Age. We also demonstrate that light skin pigmentation in Europeans was already present at high frequency in the Bronze Age, but not lactose tolerance, indicating a more recent onset of positive selection on lactose tolerance than previously thought.

1,088 citations

Journal ArticleDOI
24 Dec 2015-Nature
TL;DR: A genome-wide scan for selection using ancient DNA is reported, capitalizing on the largest ancient DNA data set yet assembled: 230 West Eurasians who lived between 6500 and 300 bc, including 163 with newly reported data.
Abstract: Ancient DNA makes it possible to observe natural selection directly by analysing samples from populations before, during and after adaptation events. Here we report a genome-wide scan for selection using ancient DNA, capitalizing on the largest ancient DNA data set yet assembled: 230 West Eurasians who lived between 6500 and 300 bc, including 163 with newly reported data. The new samples include, to our knowledge, the first genome-wide ancient DNA from Anatolian Neolithic farmers, whose genetic material we obtained by extracting from petrous bones, and who we show were members of the population that was the source of Europe's first farmers. We also report a transect of the steppe region in Samara between 5600 and 300 bc, which allows us to identify admixture into the steppe from at least two external sources. We detect selection at loci associated with diet, pigmentation and immunity, and two independent episodes of selection on height.

1,083 citations