scispace - formally typeset
Search or ask a question
Author

Pavel Pudil

Bio: Pavel Pudil is an academic researcher from University of Economics, Prague. The author has contributed to research in topics: Feature selection & Pattern recognition (psychology). The author has an hindex of 22, co-authored 81 publications receiving 5537 citations. Previous affiliations of Pavel Pudil include Czechoslovak Academy of Sciences & Academy of Sciences of the Czech Republic.


Papers
More filters
Journal ArticleDOI
TL;DR: Sequential search methods characterized by a dynamically changing number of features included or eliminated at each step, henceforth "floating" methods, are presented and are shown to give very good results and to be computationally more effective than the branch and bound method.

3,104 citations

Proceedings ArticleDOI
09 Oct 1994
TL;DR: The recently developed "floating search" algorithms are presented and modified to a more compact form facilitating their direct comparison with the well known (l,r) search.
Abstract: In this paper the recently developed "floating search" algorithms are presented and modified to a more compact form facilitating their direct comparison with the well known (l,r) search. The properties of the floating search methods are investigated, especially with respect to their tolerance to nonmonotonic criteria. Their computational efficiency is demonstrated by results on real data of high dimensionality.

368 citations

Journal ArticleDOI
TL;DR: A new suboptimal search strategy for feature selection that represents a more sophisticated version of “classical” floating search algorithms and facilitates finding a solution even closer to the optimal one.

336 citations

Journal ArticleDOI
TL;DR: A novel search principle for optimal feature subset selection using the branch & bound method using a simple mechanism for predicting criterion values is introduced and two implementations of the proposed prediction mechanism are proposed that are suitable for use with nonrecursive and recursive criterion forms.
Abstract: A novel search principle for optimal feature subset selection using the branch & bound method is introduced. Thanks to a simple mechanism for predicting criterion values, a considerable amount of time can be saved by avoiding many slow criterion evaluations. We propose two implementations of the proposed prediction mechanism that are suitable for use with nonrecursive and recursive criterion forms, respectively. Both algorithms find the optimum usually several times faster than any other known branch & bound algorithm. As the algorithm computational efficiency is crucial, due to the exponential nature of the search problem, we also investigate other factors that affect the search performance of all branch & bound algorithms. Using a set of synthetic criteria, we show that the speed of the branch & bound algorithms strongly depends on the diversity among features, feature stability with respect to different subsets, and criterion function dependence on feature set size. We identify the scenarios where the search is accelerated the most dramatically (finish in linear time), as well as the worst conditions. We verify our conclusions experimentally on three real data sets using traditional probabilistic distance criteria.

274 citations

Book ChapterDOI
TL;DR: In this paper, the authors compared the performance of the (l, r) search algorithm with the genetic approach to feature subset search in high-dimensional spaces and found that the properties inferred for these techniques from medium scale experiments involving up to a few tens of dimensions extend to dimensionalities of one order of magnitude higher.
Abstract: The combinatorial search problem arising in feature selection in high dimensional spaces is considered. Recently developed techniques based on the classical sequential methods and the (l, r) search called Floating search algorithms are compared against the Genetic approach to feature subset search. Both approaches have been designed with the view to give a good compromise between efficiency and effectiveness for large problems. The purpose of this paper is to investigate the applicability of these techniques to high dimensional problems of feature selection. The aim is to establish whether the properties inferred for these techniques from medium scale experiments involving up to a few tens of dimensions extend to dimensionalities of one order of magnitude higher. Further, relative merits of these techniques vis-a-vis such high dimensional problems are explored and the possibility of exploiting the best aspects of these methods to create a composite feature selection procedure with superior properties is considered.

252 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the maximal statistical dependency criterion based on mutual information (mRMR) was proposed to select good features according to the maximal dependency condition. But the problem of feature selection is not solved by directly implementing mRMR.
Abstract: Feature selection is an important problem for pattern classification systems. We study how to select good features according to the maximal statistical dependency criterion based on mutual information. Because of the difficulty in directly implementing the maximal dependency condition, we first derive an equivalent form, called minimal-redundancy-maximal-relevance criterion (mRMR), for first-order incremental feature selection. Then, we present a two-stage feature selection algorithm by combining mRMR and other more sophisticated feature selectors (e.g., wrappers). This allows us to select a compact set of superior features at very low cost. We perform extensive experimental comparison of our algorithm and other methods using three different classifiers (naive Bayes, support vector machine, and linear discriminate analysis) and four different data sets (handwritten digits, arrhythmia, NCI cancer cell lines, and lymphoma tissues). The results confirm that mRMR leads to promising improvement on feature selection and classification accuracy.

8,078 citations

05 Aug 2003
TL;DR: This work derives an equivalent form, called minimal-redundancy-maximal-relevance criterion (mRMR), for first-order incremental feature selection, and presents a two-stage feature selection algorithm by combining mRMR and other more sophisticated feature selectors (e.g., wrappers).

7,075 citations

Journal ArticleDOI
TL;DR: The objective of this review paper is to summarize and compare some of the well-known methods used in various stages of a pattern recognition system and identify research topics and applications which are at the forefront of this exciting and challenging field.
Abstract: The primary goal of pattern recognition is supervised or unsupervised classification. Among the various frameworks in which pattern recognition has been traditionally formulated, the statistical approach has been most intensively studied and used in practice. More recently, neural network techniques and methods imported from statistical learning theory have been receiving increasing attention. The design of a recognition system requires careful attention to the following issues: definition of pattern classes, sensing environment, pattern representation, feature extraction and selection, cluster analysis, classifier design and learning, selection of training and test samples, and performance evaluation. In spite of almost 50 years of research and development in this field, the general problem of recognizing complex patterns with arbitrary orientation, location, and scale remains unsolved. New and emerging applications, such as data mining, web searching, retrieval of multimedia data, face recognition, and cursive handwriting recognition, require robust and efficient pattern recognition techniques. The objective of this review paper is to summarize and compare some of the well-known methods used in various stages of a pattern recognition system and identify research topics and applications which are at the forefront of this exciting and challenging field.

6,527 citations

Journal ArticleDOI
TL;DR: A common theoretical framework for combining classifiers which use distinct pattern representations is developed and it is shown that many existing schemes can be considered as special cases of compound classification where all the pattern representations are used jointly to make a decision.
Abstract: We develop a common theoretical framework for combining classifiers which use distinct pattern representations and show that many existing schemes can be considered as special cases of compound classification where all the pattern representations are used jointly to make a decision. An experimental comparison of various classifier combination schemes demonstrates that the combination rule developed under the most restrictive assumptions-the sum rule-outperforms other classifier combinations schemes. A sensitivity analysis of the various schemes to estimation errors is carried out to show that this finding can be justified theoretically.

5,670 citations

Journal ArticleDOI
TL;DR: This paper addresses the problem of the classification of hyperspectral remote sensing images by support vector machines by understanding and assessing the potentialities of SVM classifiers in hyperdimensional feature spaces and concludes that SVMs are a valid and effective alternative to conventional pattern recognition approaches.
Abstract: This paper addresses the problem of the classification of hyperspectral remote sensing images by support vector machines (SVMs) First, we propose a theoretical discussion and experimental analysis aimed at understanding and assessing the potentialities of SVM classifiers in hyperdimensional feature spaces Then, we assess the effectiveness of SVMs with respect to conventional feature-reduction-based approaches and their performances in hypersubspaces of various dimensionalities To sustain such an analysis, the performances of SVMs are compared with those of two other nonparametric classifiers (ie, radial basis function neural networks and the K-nearest neighbor classifier) Finally, we study the potentially critical issue of applying binary SVMs to multiclass problems in hyperspectral data In particular, four different multiclass strategies are analyzed and compared: the one-against-all, the one-against-one, and two hierarchical tree-based strategies Different performance indicators have been used to support our experimental studies in a detailed and accurate way, ie, the classification accuracy, the computational time, the stability to parameter setting, and the complexity of the multiclass architecture The results obtained on a real Airborne Visible/Infrared Imaging Spectroradiometer hyperspectral dataset allow to conclude that, whatever the multiclass strategy adopted, SVMs are a valid and effective alternative to conventional pattern recognition approaches (feature-reduction procedures combined with a classification method) for the classification of hyperspectral remote sensing data

3,607 citations