scispace - formally typeset
Search or ask a question
Author

Pavle M. Joksovic

Bio: Pavle M. Joksovic is an academic researcher from University of Virginia. The author has contributed to research in topics: Voltage-dependent calcium channel & Inhibitory postsynaptic potential. The author has an hindex of 14, co-authored 15 publications receiving 1197 citations. Previous affiliations of Pavle M. Joksovic include University of Virginia Health System.

Papers
More filters
Journal ArticleDOI
TL;DR: It is found that, in parallel with the development of diabetes-induced pain, T-type current density increased by twofold in medium-size cells from L4–L5 dorsal root ganglia (DRG) with a depolarizing shift in steady-state inactivation, and increased cellular excitability manifested as a lower threshold for burst firing in diabetic than in control cells.
Abstract: Recent data indicate that T-type Ca2+ channels are amplifiers of peripheral pain signals, but their involvement in disorders of sensory neurons such as those associated with diabetes is poorly understood. To address this issue, we used a combination of behavioral, immunohistological, molecular, and electrophysiological studies in rats with streptozotocin (N-[methylnitrosocarbamoil]-D-glucosamine)-induced early diabetic neuropathy. We found that, in parallel with the development of diabetes-induced pain, T-type current density increased by twofold in medium-size cells from L4-L5 dorsal root ganglia (DRG) with a depolarizing shift in steady-state inactivation. This not only correlated closely with more prominent afterdepolarizing potentials (ADPs) but also increased cellular excitability manifested as a lower threshold for burst firing in diabetic than in control cells. T-type currents and ADPs were potently inhibited by nickel and enhanced by L-cysteine, suggesting that the Ca(V)3.2 T-type channel isoform was upregulated. Both control and diabetic DRG cells with ADPs stained positively for isolectin B4, but only diabetic cells responded robustly to capsaicin, suggesting enhanced nociceptive function. Because increased excitability of sensory neurons may result in such pathological perceptions of pain as hyperalgesia and allodynia, upregulation of T-type Ca2+ currents and enhanced Ca2+ entry into these cells could contribute to the development of symptoms in diabetic neuropathy.

251 citations

Journal ArticleDOI
TL;DR: The finding that T-type currents are upregulated in a CCI model of peripheral neuropathy and earlier pharmacological and molecular studies suggest that T -type channels may be potentially useful therapeutic targets for the treatment of neuropathic pain associated with partial mechanical injury to the sciatic nerve.
Abstract: Recent data indicate that peripheral T-type Ca2+ channels are instrumental in supporting acute pain transmission. However, the function of these channels in chronic pain processing is less clear. T...

203 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the endogenous reducing agent l-cysteine lowers the threshold for nociceptor excitability and induces burst firing by increasing the amplitude of T-type currents and shifting the gating parameters ofT-type channels.
Abstract: Recent studies have demonstrated a previously unrecognized contribution of T-type Ca2+ channels in peripheral sensory neurons to pain sensation (nociception). However, the cellular mechanisms underlying the functions of these channels in nociception are not known. Here, in both acutely dissociated and intact rat dorsal root ganglion neurons, we characterize a novel subpopulation of capsaicin- and isolectin B4-positive nociceptors that also expresses a high density of T-type Ca2+ currents. Using these "T-rich" cells as a model, we demonstrate that the endogenous reducing agent L-cysteine lowers the threshold for nociceptor excitability and induces burst firing by increasing the amplitude of T-type currents and shifting the gating parameters of T-type channels. These findings, which provide the first direct evidence of T-type Ca2+ channel involvement in the control of nociceptor excitability, suggest that endogenous T-type channel agonists may sensitize a unique subpopulation of peripheral nociceptors, consequently influencing pain processing under normal or pathological conditions.

171 citations

Journal ArticleDOI
TL;DR: Impaired mitochondrial morphogenesis is accompanied by heightened autophagic activity, decrease in mitochondrial density, and long-lasting disturbances in inhibitory synaptic neurotransmission, showing that developing mitochondria are exquisitely vulnerable to general anesthesia and may be important early target of anesthesia-induced developmental neurodegeneration.
Abstract: Background Clinically used general anesthetics, alone or in combination, are damaging to the developing mammalian brain. In addition to causing widespread apoptotic neurodegeneration in vulnerable brain regions, exposure to general anesthesia at the peak of synaptogenesis causes learning and memory deficiencies later in life. Our in-vivo rodent studies have suggested that activation of the intrinsic (mitochondria-dependent) apoptotic pathway is the earliest warning sign of neuronal damage, suggesting that a disturbance in mitochondrial integrity and function could be the earliest triggering events.

160 citations

Journal ArticleDOI
TL;DR: This study represents the first mechanistic demonstration of ion channel modulation by ascorbate, and suggests that ascorBate may function as an endogenous modulator of neuronal excitability.
Abstract: T-type Ca2+ channels (T-channels) are involved in the control of neuronal excitability and their gating can be modulated by a variety of redox agents. Ascorbate is an endogenous redox agent that can function as both an anti- and pro-oxidant. Here, we show that ascorbate selectively inhibits native Ca(v)3.2 T-channels in peripheral and central neurons, as well as recombinant Ca(v)3.2 channels heterologously expressed in human embryonic kidney 293 cells, by initiating the metal-catalyzed oxidation of a specific, metal-binding histidine residue in domain 1 of the channel. Our biophysical experiments indicate that ascorbate reduces the availability of Ca(v)3.2 channels over a wide range of membrane potentials, and inhibits Ca(v)3.2-dependent low-threshold-Ca2+ spikes as well as burst-firing in reticular thalamic neurons at physiologically relevant concentrations. This study represents the first mechanistic demonstration of ion channel modulation by ascorbate, and suggests that ascorbate may function as an endogenous modulator of neuronal excitability.

125 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Comparisons with the features of natural sleep are helping to understand how anaesthetics work and the neuronal pathways that they affect, and suggests that the thalamus and the neurons that regulate its activity are the key to understanding how anaesthetic-induced loss of consciousness is understood.
Abstract: The mechanisms through which general anaesthetics, an extremely diverse group of drugs, cause reversible loss of consciousness have been a long-standing mystery. Gradually, a relatively small number of important molecular targets have emerged, and how these drugs act at the molecular level is becoming clearer. Finding the link between these molecular studies and anaesthetic-induced loss of consciousness presents an enormous challenge, but comparisons with the features of natural sleep are helping us to understand how these drugs work and the neuronal pathways that they affect. Recent work suggests that the thalamus and the neuronal networks that regulate its activity are the key to understanding how anaesthetics cause loss of consciousness.

1,101 citations

Journal ArticleDOI
TL;DR: This trial found no evidence that just under an hour of sevoflurane anaesthesia in infancy increases the risk of adverse neurodevelopmental outcome at two years of age compared to RA.

839 citations

Journal ArticleDOI
TL;DR: This review describes how use-dependent blockers of the different isoforms could selectively block calcium channels in particular pathologies, such as nociceptive neurons in pain states or in epileptic brain circuits, and describes how selectivity for different subtypes of calcium channels may be achieved in the future.
Abstract: Voltage-gated calcium channels are required for many key functions in the body. In this review, the different subtypes of voltage-gated calcium channels are described and their physiologic roles and pharmacology are outlined. We describe the current uses of drugs interacting with the different calcium channel subtypes and subunits, as well as specific areas in which there is strong potential for future drug development. Current therapeutic agents include drugs targeting L-type Ca(V)1.2 calcium channels, particularly 1,4-dihydropyridines, which are widely used in the treatment of hypertension. T-type (Ca(V)3) channels are a target of ethosuximide, widely used in absence epilepsy. The auxiliary subunit α2δ-1 is the therapeutic target of the gabapentinoid drugs, which are of value in certain epilepsies and chronic neuropathic pain. The limited use of intrathecal ziconotide, a peptide blocker of N-type (Ca(V)2.2) calcium channels, as a treatment of intractable pain, gives an indication that these channels represent excellent drug targets for various pain conditions. We describe how selectivity for different subtypes of calcium channels (e.g., Ca(V)1.2 and Ca(V)1.3 L-type channels) may be achieved in the future by exploiting differences between channel isoforms in terms of sequence and biophysical properties, variation in splicing in different target tissues, and differences in the properties of the target tissues themselves in terms of membrane potential or firing frequency. Thus, use-dependent blockers of the different isoforms could selectively block calcium channels in particular pathologies, such as nociceptive neurons in pain states or in epileptic brain circuits. Of important future potential are selective Ca(V)1.3 blockers for neuropsychiatric diseases, neuroprotection in Parkinson's disease, and resistant hypertension. In addition, selective or nonselective T-type channel blockers are considered potential therapeutic targets in epilepsy, pain, obesity, sleep, and anxiety. Use-dependent N-type calcium channel blockers are likely to be of therapeutic use in chronic pain conditions. Thus, more selective calcium channel blockers hold promise for therapeutic intervention.

762 citations

Journal ArticleDOI
02 Apr 2014-Neuron
TL;DR: Attention is focused on salient aspects of voltage-gated calcium channel function, physiology, and pathophysiology that are of critical importance to brain function.

509 citations

Journal ArticleDOI
TL;DR: The discovery of new bioactives using proteomic/transcriptomic approaches combined with high-throughput platforms and better defining conopeptide structure-activity relationships using relevant membrane protein crystal structures are expected to grow the already significant impact conopePTides have had as both research probes and leads to new therapies.
Abstract: Conopeptides are a diverse group of recently evolved venom peptides used for prey capture and/or defense. Each species of cone snails produces in excess of 1000 conopeptides, with those pharmacologically characterized (≈ 0.1%) targeting a diverse range of membrane proteins typically with high potency and specificity. The majority of conopeptides inhibit voltage- or ligand-gated ion channels, providing valuable research tools for the dissection of the role played by specific ion channels in excitable cells. It is noteworthy that many of these targets are found to be expressed in pain pathways, with several conopeptides having entered the clinic as potential treatments for pain [e.g., pyroglutamate1-MrIA (Xen2174)] and one now marketed for intrathecal treatment of severe pain [ziconotide (Prialt)]. This review discusses the diversity, pharmacology, structure-activity relationships, and therapeutic potential of cone snail venom peptide families acting at voltage-gated ion channels (ω-, μ-, μO-, δ-, ι-, and κ-conotoxins), ligand-gated ion channels (α-conotoxins, σ-conotoxin, ikot-ikot, and conantokins), G-protein-coupled receptors (ρ-conopeptides, conopressins, and contulakins), and neurotransmitter transporters (χ-conopeptides), with expanded discussion on the clinical potential of sodium and calcium channel inhibitors and α-conotoxins. Expanding the discovery of new bioactives using proteomic/transcriptomic approaches combined with high-throughput platforms and better defining conopeptide structure-activity relationships using relevant membrane protein crystal structures are expected to grow the already significant impact conopeptides have had as both research probes and leads to new therapies.

367 citations