scispace - formally typeset
Search or ask a question
Author

Pawan Kapur

Bio: Pawan Kapur is an academic researcher from Stanford University. The author has contributed to research in topics: Optical interconnect & Transistor. The author has an hindex of 21, co-authored 57 publications receiving 2583 citations.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
01 May 2001
TL;DR: This paper analyzes the limitations of the existing interconnect technologies and design methodologies and presents a novel three-dimensional chip design strategy that exploits the vertical dimension to alleviate the interconnect related problems and to facilitate heterogeneous integration of technologies to realize a system-on-a-chip (SoC) design.
Abstract: Performance of deep-submicrometer very large scale integrated (VLSI) circuits is being increasingly dominated by the interconnects due to decreasing wire pitch and increasing die size. Additionally, heterogeneous integration of different technologies in one single chip is becoming increasingly desirable, for which planar (two-dimensional) ICs may not be suitable. This paper analyzes the limitations of the existing interconnect technologies and design methodologies and presents a novel three-dimensional (3-D) chip design strategy that exploits the vertical dimension to alleviate the interconnect related problems and to facilitate heterogeneous integration of technologies to realize a system-on-a-chip (SoC) design. A comprehensive analytical treatment of these 3-D ICs has been presented and it has been shown that by simply dividing a planar chip into separate blocks, each occurring a separate physical level interconnected by short and vertical interlayer interconnects (VILICs), significant improvement in performance and reduction in wire-limited chip area can be achieved, without the aid of any other circuit or design innovations. A scheme to optimize the interconnect distribution among different interconnect tiers is presented and the effect of transferring the repeaters to upper Si layers has been quantified in this analysis for a two-layer 3-D chip. Furthermore, one of the major concerns in 3-D ICs arising due to power dissipation problems has been analyzed and an analytical model has been presented to estimate the temperatures of the different active layers. It is demonstrated that advancement in heat sinking technology will be necessary in order to extract maximum performance from these chips. Implications of 3-D device architecture on several design issues have also been discussed with special attention to SoC design strategies. Finally some of the promising technologies for manufacturing 3-D ICs have been outlined.

1,057 citations

Journal ArticleDOI
TL;DR: In this article, a realistic assessment of future interconnect performance is addressed, specifically, by modeling copper wire effective resistivity in the light of technological and reliability constraints, and detailed implications of the effect of resistivity trends on performance are addressed in the second part.
Abstract: A realistic assessment of future interconnect performance is addressed, specifically, by modeling copper (Cu) wire effective resistivity in the light of technological and reliability constraints. The scaling-induced rise in resistance in the future may be significantly exacerbated due to an increase in Cu resistivity itself, through both electron surface scattering and the diffusion barrier effect. The impact of these effects on resistivity is modeled under various technological conditions and constraints. These constraints include the interconnect operation temperature, the effect of copper-diffusion barrier thickness and its deposition technology, and the quality of the interconnect/barrier interface. Reliable effective resistivity trends are established at various tiers of interconnects, namely, at the local, semiglobal, and global levels. Detailed implications of the effect of resistivity trends on performance are addressed in the second part of this work.

235 citations

Journal ArticleDOI
TL;DR: In this paper, a power comparison between optical and electrical interconnects is presented with respect to the relevant parameters such as bandwidth, interconnect length and bit error rate (BER) by capturing the essential complexity in both types of interconnect systems.
Abstract: An I/O bandwidth commensurate with a dramatically increasing on-chip computational capability is highly desirable. Achieving this goal using board-level copper interconnects in the future will become increasingly challenging owing to severe increase in high-frequency, skin-effect and dielectric loss, noise due to crosstalk, impedance mismatch, and package reflections. The solutions designed to overcome these deleterious effects require complex signal processing at the interconnect endpoints, which results in a larger power and area requirement. Optical interconnects offer a powerful alternative, potentially at a lower power. Prior work in comparing the two technologies has entailed overly simplified assumptions pertaining to either the optical or the electrical system. In this paper, we draw a more realistic power comparison with respect to the relevant parameters such as bandwidth, interconnect length and bit error rate (BER) by capturing the essential complexity in both types of interconnect systems. At the same time, we preserve the simplicity by using mostly analytical models, verified by SPICE simulations where possible. We also identify critical device and system parameters, which have a large effect on power dissipation in each type of interconnect, while quantifying the severity of their impact. For optical interconnect, these parameters are detector and modulator capacitance, responsivity, coupling efficiency and modulator type; whereas, in the case of electrical system, the critical parameters include receiver sensitivity/offset and impedance mismatch. Toward this end, we first present an optimization scheme to minimize optical interconnect power and quantify its performance as a function of future technology nodes. Next, on the electrical interconnect side, we examine the power dissipation of a state-of-the-art electrical interconnect, which uses simultaneous bidirectional signaling with transmitter equalization and on-chip noise cancellation. Finally, we draw extensive comparisons between optical and electrical interconnects. As an example, for bandwidth of 6 Gb/s at 100 nm technology node, lengths greater than the critical length of about 43 cm yields lower power in optical interconnects. This length becomes lower (making optics more favorable) with higher data rates and lower bit error rate requirement.

177 citations

Journal ArticleDOI
TL;DR: In this paper, the authors extended the realistic resistance modeling of on-chip copper interconnects to assess its impact on key interconnect performance metrics, including wire delay and power penalty arising from repeater insertion.
Abstract: For pt. I see ibid., vol.49, no.4, pp.590-7 (2002). This work extends the realistic resistance modeling of on-chip copper interconnects to assess its impact on key interconnect performance metrics. As quantified in part I of this work, the effective resistivity of copper is not only significantly larger than its ideal, bulk value but also highly dependent on technology and reliability constraints. Performance is quantified under various technological conditions in the future. In particular, wire delay is extensively addressed. Further, the impact of optimal repeater insertion to improve these parameters is also studied using realistic resistance trends. The impact of technologically constrained resistance on power penalty arising from repeater insertion is briefly addressed. Where relevant, aforementioned results are contrasted with those obtained using ideal copper resistivity.

130 citations

Journal ArticleDOI
TL;DR: In this article, the authors compare the performance of optical and carbon nanotubes (CNT) interconnects and compare it with Cu/low-kappa wires for future high-performance integrated circuits.
Abstract: Optical interconnects and carbon nanotubes (CNTs) present promising options for replacing the existing Cu-based global/semiglobal (optics and CNT) and local (CNT) wires. We quantify the performance of these novel interconnects and compare it with Cu/low-kappa wires for future high-performance integrated circuits. We find that for a local wire, a CNT bundle exhibits a smaller latency than Cu for a given geometry. In addition, by leveraging the superior electromigration properties of CNT and optimizing its geometry, the latency advantage can be further amplified. For semiglobal and global wires, we compare both optical and CNT options with Cu in terms of latency, energy efficiency/power dissipation, and bandwidth density. The above trends are studied with technology node. In addition, for a future technology node, we compare the relationship between bandwidth density, power density, and latency, thus alluding to the latency and power penalty to achieve a given bandwidth density. Optical wires have the lowest latency and the highest possible bandwidth density using wavelength division multiplexing, whereas a CNT bundle has a lower latency than Cu. The power density comparison is highly switching activity (SA) dependent, with high SA favoring optics. At low SA, optics is only power efficient compared to CNT for a bandwidth density beyond a critical value. Finally, we also quantify the impact of improvement in optical and CNT technology on the above comparisons. A small monolithically integrated detector and modulator capacitance for optical interconnects (~10 fF) yields a superior power density and latency even at relatively lower SA (~20%) but at high bandwidth density. At lower bandwidth density and SA lower than 20%, an improvement in mean free path and packing density of CNT can render it most energy efficient.

100 citations


Cited by
More filters
Journal ArticleDOI
10 Jun 2009
TL;DR: The current performance and future demands of interconnects to and on silicon chips are examined and the requirements for optoelectronic and optical devices are project if optics is to solve the major problems of interConnects for future high-performance silicon chips.
Abstract: We examine the current performance and future demands of interconnects to and on silicon chips. We compare electrical and optical interconnects and project the requirements for optoelectronic and optical devices if optics is to solve the major problems of interconnects for future high-performance silicon chips. Optics has potential benefits in interconnect density, energy, and timing. The necessity of low interconnect energy imposes low limits especially on the energy of the optical output devices, with a ~ 10 fJ/bit device energy target emerging. Some optical modulators and radical laser approaches may meet this requirement. Low (e.g., a few femtofarads or less) photodetector capacitance is important. Very compact wavelength splitters are essential for connecting the information to fibers. Dense waveguides are necessary on-chip or on boards for guided wave optical approaches, especially if very high clock rates or dense wavelength-division multiplexing (WDM) is to be avoided. Free-space optics potentially can handle the necessary bandwidths even without fast clocks or WDM. With such technology, however, optics may enable the continued scaling of interconnect capacity required by future chips.

1,959 citations

Journal ArticleDOI
TL;DR: The research shows that NoC constitutes a unification of current trends of intrachip communication rather than an explicit new alternative.
Abstract: The scaling of microchip technologies has enabled large scale systems-on-chip (SoC). Network-on-chip (NoC) research addresses global communication in SoC, involving (i) a move from computation-centric to communication-centric design and (ii) the implementation of scalable communication structures. This survey presents a perspective on existing NoC research. We define the following abstractions: system, network adapter, network, and link to explain and structure the fundamental concepts. First, research relating to the actual network design is reviewed. Then system level design and modeling are discussed. We also evaluate performance analysis techniques. The research shows that NoC constitutes a unification of current trends of intrachip communication rather than an explicit new alternative.

1,720 citations

PatentDOI
06 Apr 2012-Science
TL;DR: In this article, the authors present stretchable and printable semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed, or otherwise deformed.
Abstract: The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.

1,673 citations

Journal ArticleDOI
01 Jun 2018
TL;DR: This Review Article examines the development of in-memory computing using resistive switching devices, where the two-terminal structure of the devices, theirresistive switching properties, and direct data processing in the memory can enable area- and energy-efficient computation.
Abstract: Modern computers are based on the von Neumann architecture in which computation and storage are physically separated: data are fetched from the memory unit, shuttled to the processing unit (where computation takes place) and then shuttled back to the memory unit to be stored. The rate at which data can be transferred between the processing unit and the memory unit represents a fundamental limitation of modern computers, known as the memory wall. In-memory computing is an approach that attempts to address this issue by designing systems that compute within the memory, thus eliminating the energy-intensive and time-consuming data movement that plagues current designs. Here we review the development of in-memory computing using resistive switching devices, where the two-terminal structure of the devices, their resistive switching properties, and direct data processing in the memory can enable area- and energy-efficient computation. We examine the different digital, analogue, and stochastic computing schemes that have been proposed, and explore the microscopic physical mechanisms involved. Finally, we discuss the challenges in-memory computing faces, including the required scaling characteristics, in delivering next-generation computing. This Review Article examines the development of in-memory computing using resistive switching devices.

1,193 citations